Este Mundo, a veces insólito

Calendario
septiembre 2024
L M X J V S D
 1
2345678
9101112131415
16171819202122
23242526272829
30  

Archivo diario: 9 septiembre, 2024

Chang’e 6

Chang’e 6

Primeras muestras de la cara oculta de la Luna

La misión Chang’e 6 fue lanzada el 3 de mayo de 2024 a las 09:27 UTC mediante el Larga Marcha CZ-5 Y8. Tras una corrección de trayectoria, el 8 de mayo a las 02:12 UTC se colocó en una órbita inicial retrógrada de 200 x 8600 kilómetros y un periodo de 12 horas mediante el motor del segmento orbital. Desde esta órbita inicial, ese mismo día a las 08:14 UTC la sonda desplegó el pequeño cubesat paquistaní ICUBE-Q. En los días posteriores se situó en una órbita con un periodo de 4 horas y, finalmente, en una órbita circular de 200 kilómetros. El 30 de mayo el segmento de descenso se separó del segmento orbital y redujo su periastro hasta los 15 kilómetros. El 1 de junio a las 22:09 UTC el motor de la etapa de descenso se encendió cuando estaba en el periastro y comenzó el encendido final. El alunizaje tuvo lugar el 1 de junio de 2024 a las 22:23 UTC en el anillo exterior del cráter Apolo, en la cuenca de impacto Polo Sur-Aitken (SPA). Según el equipo de la sonda LRO de la NASA, las coordenadas de aterrizaje fueron 41,6385º sur, 206,0148º este, con una altitud de 5256 metros por debajo del radio medio lunar.

Partes de Chang’e 6 (CASC).

Emblema de la misión (CNSA).

Tras recoger muestras de la cara oculta mediante un taladro y un brazo robot y desplegar una pequeña cámara móvil que fotografió a la sonda en la superficie lunar, el 3 de junio de 2024 a las 23:38 UTC la etapa de ascenso del segmento de superficie de la misión despegó desde la cara oculta, dejando la etapa de descenso en la superficie. Durante los dos días de actividad, el sensor sueco de viento solar NILS (Negative Ions on Lunar Surface), suministrado por la ESA, funcionó durante un total de tres horas y confirmó por primera vez la existencia de iones negativos en la superficie lunar (además, NILS ha sido el primer instrumento oficial de la ESA en la superficie de la Luna). La etapa de ascenso quedó situada en una órbita inicial de 15 x 180 kilómetros seis minutos más tarde y luego elevo su periastro hasta los 50 x 180 kilómetros. Una vez en la posición adecuada con respecto al segmento orbital, efectuó otra ignición para colocarse en una órbita de 180 x 210 kilómetros. Cuando estuvo cerca del módulo orbital realizó el último encendido principal para circularizar la órbita.

Lanzamiento de la Chang’e 6 (CNSA).

Panorama de la zona de alunizaje en la cara oculta (CNSA).

 

La sonda Chang’e 6 en la cuenca del Polo Sur-Aitken de la cara oculta de la Luna con el brazo robot desplegado de 3,7 metros. Imagen tomada por un pequeño rover-cámara desplegable (CNSA).

 

 

El pequeño rover-cámara que tomó la imagen anterior (CNSA).

La Chang’e 6 vista en la superficie lunar por la sonda LRO de la NASA (NASA).

 

 

 

 

 

 

 

Zona de aterrizaje de la Chang’e 6 (NASA).

El 6 de junio a las 06:48 UTC la etapa de ascenso se acopló con el segmento orbital utilizando un sistema de pinzas y barras ideado para mitigar la gran diferencia de masa entre los dos vehículos y que, además, permite tolerar errores relativamente importantes en cuanto a posición y velocidad comparado con otros métodos de acoplamiento. El acoplamiento tuvo lugar cerca del límite oriental entre la cara visible y la oculta. Tres pinzas situadas en el módulo orbital se cerraron sobre tres barras de la etapa superior. Durante 1 segundo las pinzas se cerraron parcialmente y en los 10 segundos restantes el sistema fue corrigiendo la secuencia de cerrado para que quedasen alineadas las naves. En los últimos 10 segundos del acoplamiento se bloqueó la posición relativa. Luego, el contenedor de muestras se trasladó de la etapa de ascenso hasta la cápsula de retorno en el módulo orbital mediante un mecanismo de transferencia con cremallera mecánica. Después la etapa de ascenso se separó y sería desorbitada, impactando contra la superficie lunar, alrededor del 8 de junio.

Recreación del acoplamiento entre la etapa de ascenso y el orbitador (CASC).

La etapa de ascenso cerca del acoplamiento (CNSA).

Transferencia del cilindro de muestras de la etapa de ascenso a la cápsula del módulo orbital (CNSA).

Por su parte, el segmento orbital expulsó el sistema de acoplamiento —antes del acoplamiento había eyectado el cono de conexión con el segmento de aterrizaje— y esperó en órbita lunar a que la Tierra y la Luna se alineasen para poder regresar a la Tierra. El 20 de junio a las 15:38 UTC el orbitador completó con éxito el encendido para regresar a la Tierra y quedó situado en una órbita amplia con una inclinación de 41,9º con respecto a nuestro planeta. El estudio de las muestras de la cara oculta de la Luna es una prioridad de la comunidad científica internacional debido a la diferencia entre este hemisferio y el visible (la corteza de la cara oculta presenta una menor superficie cubierta por basaltos de los maria debido a su mayor espesor). Además, la cuenca Polo Sur-Aitken (SPA) es la más antigua y grande de la Luna. Su estudio permitirá datar mejor la historia de nuestro satélite y entender su evolución. La NASA ha propuesto varias misiones de tipo New Frontiers para traer muestras de la cara oculta de la Luna, como es el caso de la propuesta MoonRise, pero ninguna salió adelante. Sea como sea, hoy, 55 años después de que el Apolo 11 trajese las primeras muestras lunares, ya tenemos en la Tierra rocas y regolito de la cara oculta de la Lun.

 

 

 

 

 

Localización de la cápsula en el módulo orbital con el sistema de acoplamiento y el cono adaptador y los distintos pernos explosivos (CASC).

 

 

 

 

 

Las 3 cápsulas lunares chinas.

La cápsula en el módulo orbital (CNSA).

 

 

 

 

 

 

 

 

 

 

Partes de Chang’e 6 (CASC).

El 30 de mayo a una hora indeterminada el segmento de descenso se separó, como estaba previsto, del segmento orbital. Posteriormente, el segmento de descenso redujo su periastro hasta los 15 kilómetros. El 1 de junio a las 22:09 UTC el motor de la etapa de descenso se encendió cuando estaba en el periastro y comenzó el encendido final (una de las pocas efemérides que ha hecho públicas la CNSA). El motor hipergólico YF-36A funciona durante 310 segundos en total y es capaz de modular su empuje entre los 1,5 y los 7,5 kilonewton, con un impulso específico de 313 segundos. Se puede encender hasta 30 veces y es similar al de las etapas de descenso de las sondas Chang’e 3, 4 y 5 y al del módulo de aterrizaje de la Tianwen 1. Este es el mismo motor que usará el módulo lunar tripulado Lanyué en el futuro (empleará cuatro unidades). Sus dimensiones son de 1,46 metros de largo y tiene 0,83 metros de diámetro, con una masa de 39 kg. Durante el descenso, la sonda usa también 16 motores de control de posición de 150 newton de empuje. Todos estos motores están alimentados por cuatro tanques de propergoles hipergólicos de 500 litros cada uno situados en la etapa de descenso.

Vista lateral del segmento de descenso de la Chang’e 5, similar a la Chang’e 6 (CASC).

 

 

 

 

 

 

 

 

Motor de la etapa de descenso de 1,5-7,5 kN (CASC).

Sistema de propulsión de la etapa de descenso (CASC).

La sonda siguió un perfil de descenso parecido al de la Chang’e 5, aunque no se han comunicado diferencias sustanciales. Al alcanzar los 2,5 kilómetros de altitud, la sonda, guiada por radar y lídar, ya había eliminado casi toda su velocidad horizontal y giró para colocarse en vertical. A partir de ese momento, a 2 kilómetros de altitud, la nave comenzó a buscar posibles obstáculos de gran tamaño para evitarlos usando datos del lidar y de varios sensores (lídar, altímetro de microondas y cámaras de navegación). A cien metros de altitud y a diez segundos del aterrizaje, la sonda había eliminado su velocidad horizontal completamente y quedó suspendida durante unos 2 segundos mientras el sistema de navegación óptica elegía la zona óptima de aterrizaje. A 30 metros de altitud el motor principal redujo su empuje para evitar que las rocas y el regolito desplazados pudieran dañar el vehículo. Par evitar que el regolito expulsado por el motor pudiera confundir a los sensores de navegación, la sonda iba equipada con sensores de rayos gamma que detectan la proximidad del terreno derivados de los empleados en las naves tripuladas Shenzhou. El motor se apagó a pocos metros de altura y la sonda cayó en caída libre hasta contactar con el suelo lunar.

El tren de aterrizaje de la etapa de descenso va equipado con amortiguadores y una estructura deformable para absorber la energía del impacto. Durante dos días, la Chang’e 6 recogerá muestras de la cara oculta usando un taladro capaz de llegar a 2,5 metros de profundidad y un brazo robot. El taladro acumula las muestras dentro de una manguera de tela y las deposita enrolladas directamente en el cilindro principal situado en la etapa de ascenso. El brazo robot sirve para recoger regolito y rocas seleccionadas por el control de tierra que luego serán depositados en un contenedor localizado en la etapa de descenso. Al terminar las operaciones de superficie, el brazo robot introduce este contenedor en el recipiente principal de la etapa de ascenso usando cámaras para guiarse en la maniobra. Los científicos e ingenieros de la misión trabajan contrarreloj para construir una réplica del lugar del alunizaje una vez recibidas las primeras imágenes y planear así los mejores procedimientos para recoger las muestras de superficie.

 

La Chang’e 6 recogerá muestras mediante el taladro y el brazo robot (CASC).

 

El contenedor para las muestras lleva dos cilindros: un cilindro grande en el que se acumulan las muestras del taladro enrolladas y un cilindro más pequeño con las muestras recogidas en la superficie por el brazo robot (CASC).

 

 

 

 

 

 

 

 

 

 

Detalle del taladro: las muestras se acumulan enrolladas en un tubo de tela y luego se depositan en el cilindro (CASC).

 

 

 

 

Detalle del contenedor (CASC).

Debido a las limitaciones de las sesiones de las comunicaciones con el Queqiao 2 y su posición en el apoastro, la Chang’e 6 solo tendrá 14 horas para recoger las muestras en vez de las 22 horas de la Chang’e 5. Por este motivo, la Chang’e 6 incorpora un nuevo software para adaptar las instrucciones del control de tierra a las condiciones reales de la zona de aterrizaje. Pot otro lado, la misión de superficie de la Chang’e 6 está limitada por las baterías de la sonda (no lleva RTG como las Chang’e 3 y 4), las condiciones de iluminación para la navegación óptica y la elección de muestras. Está previsto que la etapa de ascenso de la Chang’e 6 despegue de la superficie lunar en la noche del 4 de junio para acoplarse luego con el segmento orbital y transferir el contenedor con muestras a la cápsula.

 Satélite retransmisor Queqiao 2 (CCTV).

 

Detalle de la cámara rover (CNSA).

 

 

 

 

 

 

Recreación de la separación de la etapa de ascenso (CNSA).

La etapa de descenso se quedará en la superficie lunar (CASC).

La etapa de ascenso con los motores principales y los sensores estelares y solares (CASC).

China hace historia al traer a la Tierra las primeras rocas de la cara oculta de la Luna

Las rocas recuperadas pueden ayudar a los científicos a observar la evolución de la Luna y del propio sistema solar

25 junio 2024 – 08:32

China ha traído de la Luna un regalo inédito: dos kilogramos de rocas que ayudarán a resolver los misterios de la casi inexplorada cara oculta del satélite. La sonda Chang’e-6 regresó este martes transportando las primeras muestras de la superficie del hemisferio invisible desde la Tierra. Termina así con éxito un viaje completo de 53 días que representa un nuevo hito en la carrera espacial de la superpotencia asiática.

La cápsula de retorno con las muestras se separó de su módulo orbital y aterrizó en paracaídas a las 14.07 (hora local) en la estepa de Mongolia Interior, al norte de China. Las rocas recuperadas, que se enviarán ahora a un laboratorio de Pekín, pueden ayudar a los científicos a observar la evolución de la Luna y del propio sistema solar, además de proporcionar datos importantes para avanzar en las próximas misiones lunares. Tras un primer examen en Pekín, las autoridades chinas han asegurado que investigadores de otros países también podrán solicitar el acceso al estudio de las rocas lunares.

La misión comenzó el pasado 3 de mayo con el lanzamiento de la nave robótica a bordo de un cohete Long March 5. El 2 de junio, el módulo de aterrizaje se separó del orbitador y apuntó hacia la Cuenca Aitken del polo sur de la Luna, donde el Chang’e 6 descendió hasta un enorme un cráter (bautizado como Apolo) formado hace unos 4.000 millones de años y que se cree que podría contener agua helada.

Tras las operaciones de recogida de los dos kilogramos de muestras, la nave desplegó un pequeño rover de cinco kilos que se alejó para buscar una posición adecuada desde la que tomar una imagen en la que se ve el módulo de aterrizaje con los brazos robóticos usados para la perforación del terreno y la bandera china. Semanas después, el 21 de junio, el orbitador inició su regreso a la Tierra.

Esta ha sido la segunda misión de retorno después de que el Chang’e 5 volviera en 2020 con 1,73 kilos de material que recogió en la cara más cercana del satélite. Entonces, Pekín ya distribuyó pequeñas cantidades de estas muestras a varias instituciones internacionales. Esta semana, científicos chinos han desvelado que han identificado grafeno natural mientras estudiaban las proporciones de carbono en las muestras que trajo la sonda Chang’e 5.

Otras nueve misiones lunares han recuperado fragmentos de la Luna y los han devuelto a la Tierra, pero nunca antes se habían recolectado muestras de la cara oculta. “Existen diferencias significativas entre estas dos caras en términos de espesor de la corteza lunar, actividad volcánica y composición. Se espera que las muestras del Chang’e 6, al ser las primeras obtenidas de la cara oculta, respondan una de las preguntas científicas más fundamentales en la investigación científica lunar: ¿Qué actividad geológica es responsable de las diferencias entre las dos caras?”, señala Zongyu Yue, geólogo de la Academia de Ciencias de China en un artículo en la revista The Innovation.

Los científicos chinos dicen en esta publicación que las muestras de superficie devueltas probablemente consistirán en roca volcánica de 2,5 millones de años combinada con pequeñas cantidades de material generado por impactos de meteoritos cercanos.

“La mayor esperanza es que las muestras contengan algunos derretimientos de impacto (fragmentos generados cuando cuerpos más pequeños chocan contra la Luna) del cráter Apolo que pueden proporcionar limitaciones cruciales en el flujo de impacto temprano de la Luna”, continúa Yue. “Una vez que se obtenga esta información, no sólo ayudará a aclarar el papel de los primeros impactos de meteoritos en la evolución de la Luna, sino que también será de gran importancia en el análisis de la historia de los primeros impactos del sistema solar interior”.

Por primera vez tenemos muestras de la cara oculta de la Luna en la Tierra.

Punto de separación (amarillo) de la cápsula (CCTV).

Previamente, la cápsula se había separado del segmento orbital de la Chang’e 6 a las 05:22 UTC a unos 5000 kilómetros de distancia de la Tierra sobre el Atlántico sur. El orbitador realizó una maniobra propulsiva para evitar quemarse en la atmósfera terrestre y, a continuación, a las 05:41 UTC, la cápsula reentró a 11,2 km/s —la «segunda velocidad cósmica»— sobre la costa de la península Arábiga. La cápsula redujo su velocidad, descendió hasta los 60 kilómetros y volvió a salir de la atmósfera antes de volver a entrar a unos 7 km/s sobre la meseta tibetana. El aparato pudo controlar en todo momento la posición de su centro de gravedad para poder ajustar su trayectoria durante la doble reentrada y mantener así la deceleración por debajo de un umbral de seguridad. El paracaídas se desplegó a 10 kilómetros de altitud (primero salió el paracaídas extractor y luego el principal). La cápsula aterrizó inicialmente de lado y los equipos de rescate procedieron a colocarla en posición vertical antes de asegurarla y recogerla.

Trayectoria de reentrada doble de la Chang’e 6 (CNSA).

Trayectoria de reentrada: en rojo, separación de la cápsula. Los puntos señalan la primera reentrada, el mínimo de altitud de la primera reentrada, punto más alto entre reentradas y segunda reentrada (CCTV).

 

 

 

 

Doble reentrada de la Chang’e 6 (CASC).

 

 

La cápsula antes del lanzamiento (CASC).

Inclinación del paracaídas y estructura del escudo térmico inferior (CASC).

La cápsula de la Chang’e 6, al igual que las de las misiones Chang’e 5 T1 y Chang’e 5, tiene una forma similar a las cápsulas tripuladas Shenzhou, aunque su tamaño es, obviamente, mucho menor. A diferencia de las Shenzhou, la cápsula no cuelga del paracaídas paralela al suelo, sino a través de un solo punto, por lo que contacta con el suelo en una posición inclinada. No obstante, la cápsula de la Chang’e 6 no va equipada con cohetes de combustible sólido como su versión tripulada. En los próximos días sabremos la cantidad precisa de muestras que ha traído la Chang’e 6, aunque se espera que sean más de 2 kg (la Chang’e 5 trajo 1,7 kg al no poder perforar el taladro hasta la profundidad máxima prevista).

La cápsula en posición horizontal (Xinhua).

 

 

 

 

 

 

 

 

 

 

Distintos tipos de material del escudo térmico (CASC).

Vista de la cápsula (Xinhua).

Misión Chang’e 6: los 1935,3 gramos de material de la cara oculta y el robot «sapo dorado»

Por Daniel Marín, el 7 julio, 2024.

La resaca del regreso de la cápsula de la misión Chang’e 6 continúa. China ha logrado llevar a cabo la misión lunar automática más compleja de la historia sin un solo problema digno de mención. Tras el aterrizaje de la cápsula el 25 de junio, la cápsula fue trasladada a Pekín, donde al día siguiente se extrajo el contenedor con las primeras muestras de la cara oculta de la Luna. No obstante, no sería hasta el 28 de junio cuando se anunció la masa de las muestras recogidas: 1935,3 gramos. La cantidad es un éxito cuantitativo con respecto a los 1731 gramos de la Chang’e 5, pero las declaraciones de los encargados de la misión, con Hu Hao a la cabeza, revelaron que el taladro fue incapaz de llegar a los 2,5 metros previstos y apenas superó el metro de profundidad, aparentemente por encontrarse con una capa de roca demasiado dura.

La cápsula de la Chang’e 6 con las muestras de la cara oculta (Weibo).

El taladro de la Chang’e 5 no llegó al metro de profundidad por problemas similares y, a raíz de este resultado, los técnicos se aseguraron de que el taladro de la Chang’e 6 podría alcanzar su profundidad máxima. El hecho de que no haya sido así probablemente tenga que ver con suposiciones incorrectas sobre el comportamiento del regolito lunar y la dificultad de simular su mecánica en la Tierra (condiciones de gravedad, cohesión y presión diferentes). Por otro lado, el contenedor con las muestras de regolito y rocas superficiales recogidas por el brazo robot sí logró llenarse, a diferencia del de la Chang’e 5. El brazo robot llevó a cabo 8 recogidas de material frente a las 12 de la Chang’e 5, pero más profundas. En todo caso, hay cierta polémica sobre la capacidad máxima de recogida de muestras del sistema. Antes del lanzamiento de la Chang’e 5 se comentó que la combinación del brazo robot y el taladro podían recoger hasta 3 kg, aunque esta cantidad nunca se confirmó oficialmente. Para esta misión el objetivo eran 2 kg, una vez rebajadas las expectativas teniendo en cuenta las dificultades de excavar en la superficie lunar (dificultades que en su momento ya sufrieron los propios astronautas del Apolo, por cierto).

Problemas de excavaciones lunares aparte, 1,9 kg es una cantidad muy grande para una misión automática y China ya tiene en su poder 3,6 kg de muestras lunares. Ciertamente, muy lejos de los 382 kg de rocas lunares que trajeron las seis misiones Apolo que alunizaron, pero mucho más que los 300 gramos que trajeron las sondas soviéticas Luna 16, 20 y 24. Por comparación con otras misiones de retorno de muestras, no olvidemos que la misión de la NASA OSIRIS-REx trajo 121,6 gramos del asteroide Bennu y la sonda japonesa Hayabusa 2 recogió 5,4 gramos del asteroide Ryugu. En estas semanas también hemos sabido que el pequeño robot cámara que desplegó la Chang’e 6 para hacerse un selfie en la superficie lunar tenía nombre: Jinchan (金蟾), «sapo dorado» en mandarín, un animal de tres patas de la mitología china asociado con la fortuna y la Luna. Jinchan, de 5 kg, incorporaba cámaras en los dos lados y se podía comunicar mediante WiFi con la Chang’e 6, de forma parecida a la cámara desechable que dejó atrás el rover marciano Zhurong. Otra curiosidad de la misión que se ha dado a conocer es que la Chang’e 6 fue programada para realizar todas sus operaciones de forma automática por si se perdía el contacto con el satélite retransmisor Queqiao 2

. Afortunadamente, no fue necesario poner en práctica este plan y las operaciones de recogida de muestras, que apenas duraron dos días, fueron dirigidas desde tierra con ayuda de un equipo reconstruyó en tierra un modelo de la superficie alrededor de la sonda para planear previamente las operaciones del brazo robot antes de enviar las instrucciones a la sonda. Jinchan también fue programado para operar de forma independiente en caso de que fallase la conexión con la Tierra.

El robot Jinchan (Xinhua).

La etapa de descenso de la Chang’e 6 —como la de la Chang’e 5— no fue diseñada para sobrevivir al daño causado por el motor de la etapa de ascenso al despegar el 3 de junio, por lo que todas las actividades de la misión debían terminar antes, incluyendo las operaciones de los instrumentos europeos que llevaba la nave (previamente se había dicho en algunos medios chinos que seguirían funcionando tras la marcha de la etapa de ascenso hasta la noche lunar). Como ya sabemos, el instrumento sueco NILS (Negative Ions on Lunar Surface) logró detectar por primera vez iones negativos en la superficie lunar tras acumular más de tres horas de funcionamiento (de paso, NILS ha sido el primer instrumento de la ESA en operar desde la superficie de nuestro satélite), mientras que el instrumento francés DORN (Detection of Outgassing RadoN) cumplió con éxito su objetivo de detectar radón y otros isótopos radiactivos. DORN se activó el 6 de mayo camino a la Luna y, luego, una segunda vez el 17 de mayo ya en órbita lunar, donde funcionó un total de 32 horas para calibrar el instrumento. El 23 de mayo se activó una tercera vez y funcionó 111 horas. Tras el alunizaje el 1 de junio, completó sus operaciones en la superficie lunar y fue desactivado antes del despegue de la etapa superior.

Lugar de impacto de la etapa de ascenso (estrella roja superior izquierda), no lejos de la zona de aterrizaje de la Chang’e 4. A la derecha, la zona de alunizaje de la Chang’e 6 (CCTV).

Extracción del cilindro con las muestras (CNSA).

El cilindro con las muestras Chang’e 6 (CNSA).

Con respecto a la etapa de ascenso, se estrelló intencionadamente contra la superficie alrededor del 8 de junio, unos dos días después de acoplarse con el orbitador y transferir el cilindro con las muestras a la cápsula (la hora exacta no se ha publicado). El lugar de impacto es la cara oculta, curiosamente, no muy lejos de la zona de alunizaje de la Chang’e 4 (vale la pena recordar que la Chang’e 6 tenía una órbita retrógrada, a diferencia de las Chang’e anteriores). Tras la Chang’e 6, China volverá a la Luna en 2026 y 2028 con las Chang’e 7 y 8, respectivamente. A diferencia de las dos últimas misiones, las Chang’e 7 y 8 incorporarán dos orbitadores analizarán la Luna mediante numerosos instrumentos de todo tipo (desde que la sonda Chang’e 2 abandonó la órbita lunar en junio de 2011 China no dispone de un orbitador con instrumentos científicos alrededor de nuestro satélite). Además, las dos sondas incorporan sondas de aterrizaje que se posarán en el polo sur y llevarán rovers y «saltadores» capaces de explorar los cráteres en sombra permanente de forma directa. Pero antes de que despegue la Chang’e 7 en 2026, China lanzará el año que viene la misión de retorno de muestras de un asteroide Tianwen 2. En cuanto a las muestras de la Chang’e 6, ahora comienza su proceso de análisis, que durará años. China ya ha anunciado su intención de repartir algunas muestras con otras naciones con las que mantienen relaciones en el ámbito espacial. El administrador de la NASA Bill Nelson ha declarado su interés por la oferta, aunque ahora está por ver si el Congreso estadounidense permite esta colaboración.

Contenedor donde se guarda el cilindro con las muestras (CNSA).