Este Mundo, a veces insólito
Calendario
marzo 2024
L M X J V S D
 123
45678910
11121314151617
18192021222324
25262728293031

Supercontinentes y otros

Supercontinentes, Continentes, Otros…

Supercontinente es la denominación empleada en geología para aquellas masas terrestres que consisten en dos o más cratones o núcleos de continentes. Comúnmente se asocia a Pangea con este término, o a los otros dos grupos de tierras emergidos de su división (Gondwana y Laurasia), aunque el listado de supercontinentes pasados, presentes y futuros es bastante extenso.

Evidentemente los continentes y/o supercontinentes, no aparecieron de repente. Se considera que en los tiempos de formación de la Tierra, por los procesos geológicos (magma-vulcanismo-placas tectónicas-impacto de meteoritos) se formaron inmensas cantidades de rocas, de las que apenas quedan vestigios. A estos se les denomina “eones” (subdivisión informal), que a su vez dieron lugar, en algunas zonas a los “catrones”, que posteriormente formaron los grandes y primitivos continentes y supercontinentes. Por eso creo interesante (aunque no son) incluirlos en este relato.

Los supercontinentes bloquean la salida del calor interno de la tierra, lo cual produce sobrecalentamiento de la astenosfera. Eventualmente, esto produce fisuras en la litosfera a través de las cuales emergerá magma que empujará a los bloques, alejándolos. No está aún claro si los continentes se vuelven a juntar de modo accidental luego de trasladarse por el planeta (ver Deriva continental) o si se separan y vuelven a unirse luego en un movimiento acordeónico.

En esta gráfica se aprecian los cratones (amarillo) y los ciclos orogénicos actuales (verde claro).

Hay que recordar que el número y disposición de los “supercontinentes”, continentes antiguos, cratones, etc., es tema de controversia entre los científicos, existiendo varias corrientes. Así mismo los mapas, o dibujos, que se presentan sobre la disposición y forma de estos supercontinentes, son un tanto aleatorios, según las citadas corrientes, y en parte a gusto de estas. En cuanto a cratones, solo se indican los dos más importantes y primitivos.

También se incluyen aquellos continentes, algunos de ellos legendarios o míticos, que se supone posiblemente pudieron existir. Naturalmente están, geológicamente, próximos a nosotros en el tiempo, ya que este se mide en millones de años.

Todos los datos se han entresacado de la www, y de Wikipedia, también es de destacar el Blog: https://geofrik.com/, que contiene una buena información al efecto, y del cual se ha extraído parte de la información.

Listado

Nombre Edad Concepto
00 Eones hace unos 4.000 a 4.500 millones de años Otros
0 Cratones hace unos 3.900 a 3.800 millones de años Otros
1 Vaalbará hace unos 3.800 millones de años Supercontinente
2 Ur hace unos 3.000 millones de años Supercontinente
3 Kenorland hace unos 2.700 millones de años Supercontinente
4 Arctica hace unos 2.565 millones de años Continente
5 Báltica hace unos 1.800 millones de años Continente
6 Nena hace unos 1.800 millones de años Supercontinente
7 Siberia hace unos 1.800 millones de años Continente
8 Laurentia hace unos 1.800 a 1.000 millones de años Continente
9 Columbia hace unos 1.800 a 1.500 millones de años Supercontinente
10 Atlántica hace unos 1.800 a 1.300 millones de años Supercontinente
11 Rodinia hace unos 1.100 a 800 millones de años Supercontinente
12 Pannotia hace unos 600 a 540 millones de años Supercontinente
13 Avalonia hace unos 560 millones de años Microcontinente
14 Euramérica hace unos 400 millones de años Continente
15 Pangea hace unos 335 a 175 millones de años Supercontinente
16 Cimmeria hace unos 250 millones de años Microcontinente
17 Gondwana hace unos 200 millones de años Supercontinente
18 Gran Adria hace unos 200 millones de años Microcontinente
19 Laurasia hace unos 200 millones de años Continente
20 Zealandia hace unos 180 millones de años Continente
21 Mauritia hace unos 100 a 80 millones de años Microcontinente
22 Appalachia hace unos 250 a 70 millones de años Microcontinente
23 Laramidia hace unos 100 a 65 millones de años Microcontinente
24 Kerguelen hace unos 110 a 20 millones de años Tierras sumergidas
25 Balkanatolia hace unos 40 millones de años Microcontinente
26 Lemuria hace unos 200.000 a 20.000 de años Mítico
27 Mu hace unos 200.000 a 20.000 de años Mítico
28 Atlántida hace unos 40.000 a 15.000 de años Mítico
29 Kumari Kandam hace unos 50.000 a 16.000 de años Tierras sumergidas
30 Sahul Shelf hace unos 50.000 a 12.000 de años Tierras sumergidas
31 Beringia hace unos 70.000 a 11.000 de años Tierras sumergidas
32 Sondalandia hace unos 60.000 a 10.000 de años Tierras sumergidas
33 Doggerland hace unos 15.000 a 6.500 de años Tierras sumergidas
34 Meseta de Las Mascareñas > 6.000 años Tierras sumergidas
35 Otras tierras Siglos XIX y XX Esotéricas
36 América Actual Supercontinente
37 Eurafrasia Actual Supercontinente
38 Amasia Dentro de 150 millones de años Supercontinente
39 Novopangea Dentro de 200 millones de años Supercontinente
40 Aurica Dentro de 200 millones de años Supercontinente
41 Pangea Última Dentro de 250 millones de años Supercontinente

Un buen lugar, recomendable, donde se explica todo con detalle.

http://www.academia.edu/4148623/Tarea_4_DERIVA_CONTINENTAL_Y_DESPLIEGUE_DEL_FONDO1

Vídeo sobre la formación de los Continentes y Supercontinentes, relacionados con los Periodos y Eras geológicas:

Rodinia

Rodinia

Reconstrucción paleotectonica de Rodinia.

Rodinia (del ruso родина, ródina, patria) y corresponde a la masa de tierra dominante durante alrededor de 200-350 millones de años. Fue uno de los primeros supercontinentes que han sido mejor reconocidos, aunque su configuración aún no es muy clara. Fue un supercontinente que existió hace 1100 millones de años, durante el Proterozoico. Reunía gran parte de la tierra emergida del planeta. Empezó a fracturarse hace 800 millones de años debido a movimientos magmáticos en la corteza terrestre, acompañados por una fuerte actividad volcánica. La existencia de Rodinia se basa en pruebas de paleomagnetismo que permiten obtener la paleolatitud de los fragmentos, pero no su longitud, que los geólogos han determinado mediante la comparación de estratos similares, actualmente muy dispersos.

Formación

Rodinia se formó y se deshizo durante el Neoproterozoico. Probablemente existió como un único continente desde hace 1.100 millones de años hasta que comenzó a fragmentarse en ocho pequeños continentes hace alrededor de 800 millones de años.1​ Se cree que fue responsable en gran parte del clima frío del Neoproterozoico. Rodinia comenzó a formarse hace alrededor de 1.300 millones de años a partir de tres o cuatro continentes preexistentes, un acontecimiento conocido como la Orogenia Grenville.2​ La ausencia de fósiles con concha o esqueleto y los de datos paleomagnéticos fiables hacen incierto el movimiento de los continentes en el Precámbrico. Una posible reconstrucción del anterior supercontinente es Columbia

La existencia de Rodinia se basa en datos paleomagnéticos utilizando datos de las Islas Seychelles, la India y los Montes Grenville, que se formaron durante la Orogenia Grenville y que actualmente se distribuyen en varios continentes.12​ Aunque los detalles están en discusión por los paleogeógrafos, los cratones continentales que formaban parte de Rodinia parecen haberse agrupado en torno a Laurentia (proto-Norteamérica), que constituye el núcleo de Rodinia.

Parece que la costa sudoriental de Laurentia se asentaba junto a la costa noroccidental de Sudamérica, mientras que Australia y Antártida (que en este momento estaban unidas) parecen haber estado situadas junto a la costa noroeste de proto-Norteamérica. Un tercer cratón, que se convertiría en África centro-norte, puede haber quedado atrapado entre estas dos masas que colisionaban.3​ Otros cratones como el de Kalahari (África meridional) y Congo (África oeste-central), parecen haber estado separados del resto de Rodinia.

Paleogeografía

Rodinia se centraba probablemente al sur del ecuador.4​ Puesto que la Tierra en ese momento experimentaba la glaciación del Período Criogénico y las temperaturas eran al menos tan frías como actualmente, gran parte de Rodinia pudo haber estado cubierta por glaciares o formando parte del casquete de hielo del Polo Sur. El interior del continente, distante de los efectos moderadores del océano, es probable que fuera estacionalmente muy frío (clima continental). Rodinia estaba rodeado por el superocéano que los geólogos denominan Mirovia (de Mir, la palabra rusa que significa «paz»).

Las temperaturas frías puede que fueran acentuadas durante las primeras etapas de la dislocación continental. Los picos de calentamiento geotérmico dislocarían la corteza y las rocas se elevarían en relación con su entorno. Esto crearía zonas de mayor altitud, donde el aire es más frío y es menos probable que el hielo se funda con los cambios estacionales, y puede explicar la evidencia de abundante glaciación durante el Período Ediacárico.5​ La separación final de los continentes creando nuevos océanos y expandiendo el fondo oceánico, con producción de rocas menos densas, probablemente incrementó el nivel del mar por desplazamiento del agua de los océanos. El resultado fue un mayor número de océanos de aguas someras.

La evaporación del agua de los océanos pudo hacer que aumentaran las precipitaciones, lo que a su vez aumentaría la erosión de la roca expuesta. Si en los modelos de simulación por computador se introduce la relación de isótopos estables de 18O:16O, se comprueba que, además de la fuerte erosión de la roca volcánica, este aumento de las precipitaciones hizo reducir los niveles de los gases de efecto invernadero por debajo del umbral que activaría el período de glaciación extrema conocida como la Tierra bola de nieve.6​ Toda esta actividad tectónica introduciría además en el medio marino, nutrientes biológicamente importantes, lo que pudo haber desempeñado un papel importante en el desarrollo de los primeros animales.

Separación

En contraste con la formación de Rodinia, los movimientos de las masas continentales durante su ruptura se entienden bastante bien. Pruebas de amplios flujos de lava y de erupciones volcánicas durante el límite PrecámbricoCámbrico, especialmente en Norteamérica, sugieren que Rodinia comenzó a fragmentarse a más tardar hace 750 millones de años.5​ Otros continentes, incluyendo Báltica y Amazonia, se dislocaron de Laurentia hace 600-550 millones de años, abriendo el océano Iapetus entre ellos. La separación también llevó al nacimiento de océano Pantalassa (o Paleo-Pacífico).1​ Los ocho continentes que formaban parte de Rodinia más tarde volvieron a reunirse en el supercontinente global denominado Pannotia, y después una vez más como Pangea.

Otras posibilidades

También se especula que hacia los 2000 millones de años existían dos grandes supercontinentes llamados Atlántica y Nena. Atlántica, estaría formado por fracciones de América del Sur y África y, Nena, integrado América del Norte, Siberia, Groenlandia y el Escudo Báltico. Hacia los 1800 millones ambos se podrían haber unido junto con el más antiguo Ur para formar el probable primer gran supercontinente global, conocido como Columbia que podría haber existido entre los 1800 y 1500 millones de años. Este se habría fragmentado y sus fracciones se habrían vuelto a ensamblar en una configuración diferente hacia los 1100 millones de años formando el supercontinente de Rodinia

La hipótesis de Rodinia, por tratarse de un supercontinente más joven, cuenta con un número de evidencias mayor que sus antecesores.

Reconstrucción del supercontinente Rodinia

La mayoría de las reconstrucciones muestran el núcleo de Rodinia formado por el cratón norteamericano (el último paleocontinente de Laurentia), rodeado en el sudeste con el cratón de Europa del Este (Báltica), el cratón amazónico (Amazonia) y el cratón de África Occidental. En el sur, con los cratones del Río de la Plata y San Francisco; en el suroeste con los cratones Congo y Kalahari, y en el noreste con Australia, India y Antártida Oriental.

Continentes que formaron el supercontinente Rodinia

Las posiciones de Siberia y el norte y sur de China al norte del cratón norteamericano, difieren mucho según la reconstrucción a la que se haga referencia.

Distribución de cinturones orogénicos de Grenvillian dentro de la configuración de Rodinia alrededor de 750 Ma. Nótese la presencia omnipresente de orógenos de Grenvillian (azul) que cementan más de 8 cratones. El diagrama de inserción (abajo a la izquierda) muestra el patrón de distribución de diferentes grupos de ensamblajes de craton. El grupo 4 se caracteriza por la presencia predominante de arcos isleños juveniles intraoceánicos, pero puede incluir fragmentos continentales más antiguos que 1.3 Ga, como lo sugieren Abdelsalam et al. (2002). El patrón de distribución de los arcos intraoceánicos en el Grupo 4 es muy esquemático, ilustrado por el análogo moderno del Pacífico occidental.

Atlántica

Atlántica (supercontinente)

Atlántica es un supercontinente que surgió hace aproximadamente 1.800 millones de años,1​ como resultado de la lenta fragmentación del supercontinente Kenorland (iniciada hace 2.500 Ma con la separación del continente Ártica). Este supercontinente estaba constituido por los cratones de África Occidental, Congo y Nilo Occidental (actualmente localizados en África) y por los cratones de Amazonia (cratón de Brasil y escudo de Guyana), São Francisco y Rio de la Plata (situados en Sudamérica). Desde el momento en que Ártica se separó de Kenorland hasta el momento en que Atlántica quedó definido como una masa continental independiente, este supercontinente habría estado unido al supercontinente Ur (que habría formado parte, a su vez, de Kenorland).

Alrededor de 200 millones de años más tarde, se convirtió en parte del supercontinente Columbia y 300 millones de años más tarde, se separa de Columbia. Hace 1.100 millones de años (o 400 millones de años después de la desintegración de Columbia), se une a Nena y Ur pasa a formar parte del supercontinente Rodinia. Después de que Rodinia se dividiera y los fragmentos se volvieran a reunir hace 600 millones de años, pasa a formar parte del supercontinente Pannotia. En el Cámbrico, Pannotia se desintegró, dejando Atlántica en el supercontinente Gondwana. Gondwana luego pasa a formar parte del supercontinente Pangea en el Pérmico, y luego se fragmentó en el Jurásico. En la actualidad, restos de Atlántica se encuentran en África y Sudamérica.

Reconstrucción paleogeográfica del supercontinente Atlántica en la que pueden verse los principales cratones que lo constituían: África Occidental, Congo y Nilo Occidental (en África) y Amazonia (cratón de Brasil y escudo de Guyana), São Francisco y Rio de la Plata (en Sudamérica). Autor: Fama Clamosa.

NOTA: No confundir el nombre de Atlántica con la mitológica Atlántida, pues no tiene nada que ver.

Esquema simplificado de la reconstrucción paleogeográfica del supercontinente Atlántica. Autor: desconocido.

Configuración propuesta por Rogers, 1996 a los continentes Atlántica, Ártica y Ur. La disposición corresponde a la posición que estos continentes ocupados en supercontinente Pangea (~ 300 Ma). Modificado de Rogers, op. cit.

Reconstrucción paleogeográfica del supercontinente Columbia en la que pueden verse los principales supercontinentes (y los cratones) que lo constituían: Atlántica en un extremo, Ur en el centro, y Nena en el otro extremo. Según Personen et al. (2012), los cratones de India, Australia y este de Antártica estaban en la región del polo sur, por lo que aunque en la imagen parece que el supercontinente Nena está al revés, hay que ver que la imagen es un desglose del globo terráqueo en sus dos hemisferios, de tal modo que el polo norte está a la vez tanto arriba como abajo de la figura. Autor: desconocido.

Este ciclo de unión y desunión para formar supercontinentes globales hará que Atlántica se una con el resto de masas continentales para constituir los supercontinentes Rodinia (desde hace 1.100 Ma hasta hace 800 Ma) y Pannotia (desde hace 600 Ma hasta hace 540 Ma).

Reconstrucción paleogeográfica del supercontinente Rodinia en la que pueden verse los principales supercontinentes que lo constituían: Atlántica (en verde), en un extremo, Ur (en violeta) en el otro extremo, y Nena (en rojo) en el centro. Autor: desconocido.

Con la fragmentación de Pannotia ocurrida hace unos 540 Ma, Atlántica se quedó formando parte (junto a un gran número de masas continentales) de un supercontinente algo más pequeño que Pannotia: Gondwana, que formaría parte a su vez de Pangea cuando ésta se constituyera, hace unos 300 Ma.

Hace unos 150 Ma comenzó a formarse el océano Atlántico (que le da nombre al supercontinente Atlántica), provocando el fin de Pangea y la fracturación de Atlántica en dos mitades, separándolas y constituyendo los actuales continentes de África y Sudamérica.

Columbia

Columbia (supercontinente)

Columbia (también conocido como Nuna y, más recientemente, Hudsonlandia o Hudsonia) es el nombre de uno de los supercontinentes postulados de la Tierra. Existió desde hace aproximadamente 1800 a 1300 millones años en el Paleoproterozoico, siendo el supercontinente más antiguo.1​ Consistió en un proto-cratón que integraban los ex-continentes de Laurentia, Báltica, Ucrania, Amazonia, Australia, y posiblemente Siberia, norte de China y Kalahari. La existencia de Columbia se basa en datos paleomagnéticos.2

Tamaño y localización

Ilustración de Columbia cerca de 1.590 millones de años atrás

Se estima que Columbia tendría cerca de 12.900 km de norte a sur, y cerca de 4.800 km en su parte más ancha. La costa del este de la India estaba unida a Norteamérica occidental, con Australia meridional y Canadá occidental. La mayor parte de América del Sur estaba girada de manera que el borde occidental (lo que hoy en día es Chile y Perú) se alineó con el este de América del Norte, formando un margen continental que se extendía hasta el sur de Escandinavia.3

Formación

Columbia se formó entre 2000 y 1800 millones de años atrás, originándose orogenias; con casi todos los continentes de la Tierra de aquel tiempo.4​ Los cratones América del Sur y África Occidental se unieron hace entre 2100 y 2000 millones de años formándose las orogenias de Transamazonía y Eburnean; los cratones de Kaapvaal y Zimbabwe en el África meridional chocaron a lo largo por la Región de Limpopo hace 2000 millones de años; los cratones que formó Laurentia se unieron hace entre 1900 y 1800 millones de años originándose las orogenias de Trans-Hudson, Penokean, Taltson–Thelon, Wopmay, Ungava, Torngat y Nagssugtoqidain; los cratones Kola, Karelia, Volgo-Uralia y Sarmatia (Ucrania) dieron lugar a Baltica (Europa oriental) hace entre 1900 y 1800 millones de años mediante las orogenias de Kola–Karelia, Svecofennian, Volhyn-Rusia central y Pachelma; los cratones Anabar y Aldan en Siberia hace entre 1900 y 1800 mediante las orogenias de Akitkan y Aldan central; Antártida oriental y un bloque continental desconocido se unieron mediante la orogenia de las Montañas transantárticas; los bloques Sur y Norte de India se fusionaron a lo largo de la Zona tectónica central de la India; y los bloques oriental y occidental del cratón Norte de la China se unieron hace unos 1850 millones de años mediante la orogenia Trans-Norte de China.

Después de su unión final hace 1800 millones de años, el supercontinente Columbia tuvo una larga vida (entre 1800 a 1300 millones de años), hubo un crecimiento en los márgenes continentales relacionado con la subducción,5​ se formó entre 1800 y 1300 un gran cinturón magmático al sur de la actual Norteamérica, Groenlandia y Báltica. Incluye los cinturones Yavapai, Llanuras centrales y Makkovikian entre 1800 y 1700 millones de años, los cinturones Mazatzal y Labradorian entre 1700 y 1600 millones de años, los cinturones Francois y Spavinaw entre 1500 y 1300 millones de años y los cinturones Elzevirian entre 1300 y 1200 millones de años en Norteamérica; los cinturones Ketilidian entre 1800 y 1700 millones de años en Groenlandia; el cinturón ígneo Trans-escandinavo entre 1800 y 1700 millones de años, el cinturón Kongsberggian-Gothian entre 1700 y 1600 millones de años, el cinturón granítico del Sudoeste de Suecia entre 1500 y 1300 millones de años en Báltica. Otros bloques de cratones sufrieron también estas consecuencias marginales al mismo tiempo. En Sudamérica, entre 1800 y 1300 millones de años se produce un aumento del borde continental a lo largo del margen occidental del cratón de Amazonia, representado por los cinturones Río Negro, Juruena y Rondonian. En Australia, entre 1800 y 1500 millones de años surgieron adicionales cinturones magmáticos, incluyendo Arunta, Mt. Isa, Georgetown, Coen y Broken Hill, en en los márgenes sur y oriental del norte del cratón de Australia y el margen oriental de cratón Gawler. En China, entre 1800 y 1400 millones de años se le añade un cinturón magmático, el llamado cinturón Xiong’er (Grupo), se extiende a lo largo de la margen sur del cratón del Norte de China.

Fragmentación

Columbia comenzó a fragmentarse hace alrededor 1600 millones de años, en relación con dislocación continental a lo largo del margen oeste de Laurentia (supergrupo cinturón Purcell), este de la India (Mahanadi y Godavari),6​ el margen meridional de Báltica (supergrupo Telemark), el margen sudeste de Siberia (Riphean aulacogens), el margen noroeste de Sudáfrica (Kalahari Copper Belt), y margen norte del Bloque Norte de China (Zhaertai-Bayan Obo Belt).5​ La fragmentación correspondió con la actividad magmática extensa, formándose anortosita-mangerita-charnockita-granito (AMCG) en Norteamérica, Báltica, Amazonia y Norte de China, y continuó hasta el final de la desintegración del supercontinente hace alrededor de 1300 a 1200 millones de años.

Supercontinente Columbia

El supercontinente Columbia consistió en un proto-cratón que integraron los núcleos de los continentes Laurentia, Baltica, Ucrania, Amazonia, Australia y, muy probablemente, Kalahari, el norte de China y Siberia.

Su formación final nos muestra algunas curiosidades como que la costa este de India estaba unida al occidente de Norteamérica y a Australia meridional, al tiempo que la mayor parte de América del Sur había rotado de tal manera que el borde occidental del actual Brasil estaba alineada con el este de América del Norte, formando un margen continental que se extendía hasta el extremo sur de Escandinavia (Baltica).

Fragmentación del supercontinente Columbia

Hace aproximadamente 1.600 millones de años, el supercontinente Columbia comenzó a fragmentarse debido a una intensa y extensa actividad magmática, dislocándose en el margen oeste de Laurentia, Baltica, el sudeste de Siberia, el norte de China, el este de India y el noroeste de Sudáfrica.

Una vez que Atlántica se separó del resto de masas que habían constituido Kenorland, se alejó de Ur y de Ártica como resultado del surgimiento de nuevos océanos entre ellos, permaneciendo más o menos estable hasta hace unos 1.800 – 1.600 Ma, momento en que empezaría a formarse el supercontinente Columbia, que debió reunir a todas las masas continentales existentes en el planeta. Así pues, Atlántica se unió de nuevo con Ur y Ártica (este último reconvertido en Nena tras incorporar algunos nuevos cratones), separándose de ellos una segunda vez hace 1.500 Ma.

Reconstrucción paleogeográfica del supercontinente Columbia en la que pueden verse los principales supercontinentes (y los cratones) que lo constituían: Atlántica en un extremo, Ur en el centro, y Nena en el otro extremo. Según Personen et al. (2012), los cratones de India, Australia y este de Antártica estaban en la región del polo sur, por lo que aunque en la imagen parece que el supercontinente Nena está al revés, hay que ver que la imagen es un desglose del globo terráqueo en sus dos hemisferios, de tal modo que el polo norte está a la vez tanto arriba como abajo de la figura. 

Columbia (2000Ma – 1600Ma)

Sólo después de 400Ma comenzó a formarse un nuevo supercontinente. Como notarán, cada alrededor de 500Ma (+/-100Ma) se forma un nuevo supercontinente, acorde al ciclo de supercontinental o más conocido en el mundo geológico como “ciclo de Wilson”. Se calcula que Columbia tenía una gran extensión areal, abarcando 13000km en el sentido N-S y 5000km en el E-O. Una vez más, los cratones involucrados son los mencionados anteriormente, a los que se les suman otros nuevos generados en esa época (Kola, Karelia, Volgo-Uralia y Sarmatia).

La desintegración comenzó hace 1600Ma y finalizó hace 1300-1200Ma.

Fragmentación y rotación de los componentes de Columbia a Rodinia.

Laurentia

Laurentia (continente)

Laurentia, también llamada el cratón norteamericano

Laurentia o el Cratón norteamericano es un gran cratón continental que forma el núcleo geológico antiguo del continente norteamericano. Muchas veces en el pasado, Laurentia ha sido un continente separado, ya que ahora está en la forma de América del Norte, aunque originalmente también incluía las áreas cratónicas de Groenlandia y también la parte noroeste de Escocia, conocida como Terrane Hebridean. Durante otros tiempos en el pasado, Laurentia ha sido parte de continentes y supercontinentes más grandes y se compone de muchos terrenos más pequeños ensamblados en una red de cinturones orogénicos proterozoicos tempranos. Pequeños microcontinentes e islas oceánicas colisionaron y suturaron sobre la siempre creciente Laurentia, y juntos formaron el cratón precámbrico estable visto hoy.[1] [2]

El cratón lleva el nombre del Escudo Laurentiano, a través de las Montañas Laurentian, que recibió su nombre del Río San Lorenzo, que lleva el nombre de Lawrence de Roma.[3]

Plataforma interior

En el este y centro de Canadá, gran parte del cratón estable está expuesto en la superficie como el Escudo canadiense; cuando se consideran extensiones subsuperficiales, el término más amplio Escudo Laurentiano es más común, sobre todo porque grandes partes de la estructura se extienden fuera de Canadá. En los Estados Unidos, el lecho rocoso del cratón está cubierto de rocas sedimentarias en la amplia plataforma interior de las regiones del medio oeste y las Grandes Llanuras y solo está expuesto en el norte de Minnesota, Wisconsin, las Adirondacks de Nueva York y la península superior de Michigan.[4] La secuencia de rocas varía de aproximadamente 1,000 m a más de 6,100 m (3,500-20,000 pies) de espesor. Las rocas cratónicas son metamórficas o ígneas con las capas sedimentarias superpuestas compuestas principalmente de calizas, areniscas y lutitas.[5] Estas rocas sedimentarias se depositaron en gran parte de hace 650 a 290 millones de años.[6]

Configuración tectónica

Las rocas metamórficas e ígneas del “complejo del sótano” de Laurentia se formaron hace 1.5 a 1.0 mil millones de años en un entorno tectónicamente activo.[7] Las rocas sedimentarias más jóvenes que se depositaron en la parte superior de este complejo de sótanos se formaron en un entorno de aguas tranquilas marinas y fluviales. Durante gran parte del tiempo de Mississippian, el cratón fue el sitio de una extensa plataforma de carbonato marino en la que se depositaron principalmente calizas y algunas dolomías y evaporitas. Esta plataforma se extendía desde las actuales Montañas Apalaches o el Valle de Misisipí hasta la actual Gran Cuenca. El cratón estaba cubierto por un mar tropical epicontinental o epicratónico, poco profundo, cálido (literalmente “en el cratón”) que tenía una profundidad máxima de solo 60 m (200 pies) en el borde de la plataforma. Durante la época del Cretácico, ese mar, el Canal Interior, se extendía desde el Golfo de México hasta el Océano Ártico, dividiendo América del Norte en masas de tierra orientales y occidentales. A veces, las masas de tierra o las cadenas montañosas se elevaban en los bordes distantes del cratón y luego se erosionaban, arrojando su arena sobre el paisaje.[8][9] La subducción del continente hacia el noroeste, que duró aproximadamente 1.4 a 1.2 mil millones de años, probablemente causó el enriquecimiento orgánico[aclaración necesaria] del manto litosférico de Grenvillian. Se cree que este enriquecimiento ha contribuido a la formación del gran supercontinente Rodinia.[10]

Volcanismo

La parte suroeste de Laurentia consiste en rocas del sótano precámbrico deformadas por colisiones continentales (área violeta de la imagen de arriba). Esta área ha estado sujeta a rifting considerable como la Provincia de Cuenca y Cordillera y se ha estirado hasta el 100% de su ancho original.[11] El área contiene numerosas erupciones volcánicas grandes.

Ubicación ecuatorial

La posición del ecuador durante la Época del Ordovícico Tardío (c.445 – c.444 Ma) en Laurentia ha sido determinada a través de registros de caparazón expansivo.[12] Las inundaciones del continente que ocurrieron durante el Ordovícico proporcionaron las aguas cálidas y poco profundas para el éxito de la vida marina y, por lo tanto, un aumento en las conchas de carbonato de los moluscos. En la actualidad, las capas están compuestas por caparazones fosilizados o facies de Thalassinoides de capa masiva (MBTF) y caparazones sueltos o lechos de braquiópodos no unificados (NABS).[12] Estas capas implican la presencia de un cinturón climático ecuatorial que estaba libre de huracanes y se encontraba dentro de los 10 ° del ecuador a 22.1° S ± 13.5°.[12] Esta conclusión ecológica coincide con los hallazgos paleomagnéticos previos que confirman esta ubicación ecuatorial.[12]

Cambio paleoambiental

Varios eventos climáticos ocurrieron en Laurentia durante el Eón Phanerozoico. Durante el último Cámbrico a través del Ordovícico, el nivel del mar fluctuó con el derretimiento de la capa de hielo. Se produjeron nueve fluctuaciones a escala macro de “hipercalentamiento global” o condiciones de gases de efecto invernadero de alta intensidad.[13] Debido a la fluctuación del nivel del mar, estos intervalos llevaron a depósitos de lodo en Laurentia que actúan como un registro de eventos.[13] El Ordovícico tardío trajo un período de enfriamiento, aunque el grado de este enfriamiento todavía se debate.[14] Más de 100 Ma más tarde, en el Pérmico, se produjo una tendencia global de calentamiento.[15] Según lo indicado por los invertebrados fosilizados, el margen occidental de Laurentia fue afectado por una corriente fría duradera hacia el sur. Esta corriente contrasta con el calentamiento de las aguas en la región de Texas.[15] Esta oposición sugiere que, durante el período cálido mundial del Pérmico, el norte y el noroeste de Pangea (Laurentia occidental) permanecieron relativamente fríos.[15]

Historia geológica

  • Alrededor de 4.03 a 3.58 Ga , la formación de roca intacta más antigua del planeta, Acasta Gneiss, se formó en lo que hoy es Territorios del Noroeste (se conocen granos minerales individuales más antiguos, pero no rocas enteras).[dieciséis]
  • Alrededor de 2.565 Ga, Arctica se formó como un continente independiente.
  • Alrededor de 2.72 a 2.45 Ga, Arctica fue parte del gran supercontinente Kenorland.[aclaración necesaria]
  • Alrededor de 2.1 a 1.84 Ga, cuando Kenorland se rompió, el cratón de Arctica era parte del supercontinente menor Nena junto con Baltica y la Antártida oriental.
  • Alrededor de 1.82 Ga, Laurentia era parte del gran supercontinente Columbia .
  • Alrededor de 1.35-1.3 Ga, Laurentia era un continente independiente.
  • Alrededor de 1.3 Ga, Laurentia era parte del supercontinente menor Protorodinia.
  • Alrededor de 1.07 Ga, Laurentia era parte del gran supercontinente Rodinia.
  • Alrededor de 750 Ma, Laurentia era parte del supercontinente menor Protolaurasia. Laurentia casi destrozada.
  • Alrededor de 600 Ma, Laurentia era parte del gran supercontinente Pannotia.
  • En el Cámbrico (541 ± 0.3 a 485.4 ± 1.7 Ma), Laurentia era un continente independiente.
  • En el Ordovician (485.4 ± 1.7 a 443.8 ± 1.5 Ma), Laurentia se encogía y Baltica creció.
  • En el Devónico (419.2 ± 2.8 a 358.9 ± 2.5 Ma), Laurentia colisionó contra Baltica, formando el supercontinente menor Euramerica.
  • En el Pérmico (298.9 ± 0.8 a 252.17 ± 0.4 Ma), todos los continentes principales colisionaron entre sí, formando el supercontinente principal Pangea.
  • En el Jurásico (201.3 ± 0.6 a 145 ± 4 Ma), Pangea se revolcó en dos supercontinentes menores: Laurasia y Gondwana. Laurentia era parte del supercontinente menor Laurasia.
  • En el Cretácico (145 ± 4 a 66 Ma), Laurentia era un continente independiente llamado América del Norte.
  • En el Neógeno (23.03 ± 0.05 Ma hasta hoy o terminando 2.588 Ma), Laurentia, en la forma de América del Norte, se estrelló en América del Sur, formando el supercontinente menor América.

Evolución situación de Laurentia:

Siberia

Siberia (continente)

Siberia Asia Cratón

Localización actual en Asia.

Siberia es un antiguo continente que actualmente forma el cratón situado en el corazón de la región de Siberia. Se trata de un cratón muy antiguo que formaba un continente independiente antes del Pérmico. El cratón constituye hoy la Meseta Central Siberiana.

Al ser muy antiguo, junto con otros catrones y continentes, ha formado parte de los sucesivos continentes y supercontinentes, tanto por adición, como por fragmentación, y posteriores uniones.

Nena

Nena

Publicado por Geofrik el 09/06/2013

Reconstrucción paleogeográfica del supercontinente Nena en sus etapas finales de formación (tras haberse unido Ártica y Báltica), en la que pueden verse los principales cratones que lo constituían (Canadiense, Wyoming (a la izquierda del Canadiense y unido a él), Siberia, Karelia (o Greenland) y Báltica). 

El supercontinente Nena es el supercontinente que se formó hace unos 1.800 Ma como resultado de la unión entre los continentes Báltica y Ártica (éste último constituido por los escudos Canadiense y Siberiano, el cratón de Wyoming (EEUU) y el cratón de Karelia –actual Finlandia–), que procedían de la fragmentación del supercontinente Kenorland ocurrida hace unos 2.500 – 2.000 Ma. El nombre de Nena es un acrónimo que deriva de los nombres de Europa del Norte y Norteamérica en inglés: “Northern Europe and North America“.

Se estima que, ya desde su formación, el supercontinente Nena formó parte de un supercontinente mucho más grande: Columbia.

También se especula que hacia los 2000 millones de años existían dos grandes supercontinentes llamados Atlántica y Nena. Atlántica, estaría formado por fracciones de América del Sur y África y, Nena, integrado América del Norte, Siberia, Groenlandia y el Escudo Báltico. Hacia los 1800 millones ambos se podrían haber unido junto con el más antiguo Ur para formar el probable primer gran supercontinente global, conocido como Columbia que podría haber existido entre los 1800 y 1500 millones de años. Este se habría fragmentado y sus fracciones se habrían vuelto a ensamblar en una configuración diferente hacia los 1100 millones de años formando el supercontinente de Rodinia

Báltica

Báltica

Báltica fue un continente formado hace aproximadamente 1800 millones de años. Actualmente corresponde al norte de Europa, Escandinavia y parte de Rusia, pero los expertos sugieren que estaría ubicado más bien dentro de alguno de los círculos polares. Báltica formó parte de la posterior Laurasia.

Baltica es el nombre dado por la paleogeología a un antiguo continente que surgió aproximadamente hace 1.800 ó 1.900 millones de años durante el Paleoproterozoico y que ahora se incluye en el cratón de Europa Oriental. Formaba parte del supercontinente Rodinia. Sus dimensiones eran pequeñas en comparación con otros continentes como Laurentia o Gondwana. Antes de su formación los tres fragmentos que ahora comprenden el cratón de los países de Europa Oriental se encontraban en diferentes lugares del planeta.

 

 

 

Arctica

Arctica

Arctica o Arctida [1] era un continente antiguo que se formó hace aproximadamente 2.565 millones de años en la época de Neoarco. Estaba hecho de cratones de Archaean, incluyendo los crátones Aldan y Anabar / Angara en Siberia y los crátones Slave, Wyoming, Superior y North Atlantic en América del Norte.[2] Arctica fue nombrado por Rogers 1996 porque el Océano Ártico se formó por la separación de las cratones de América del Norte y Siberia.[3] Los geólogos rusos que escriben en inglés llaman al continente “Arctida” ya que se le dio ese nombre en 1987 [1] alternativamente el cratón hiperbóreo,[4] en referencia a los hiperbóreos en la mitología griega.

Nikolay Shatsky (Shatsky 1935) fue el primero en suponer que la corteza en la región ártica era de origen continental.[5] Shatsky, sin embargo, era un “fijador” y, erróneamente, explicó la presencia de rocas metamórficas precámbricas y paleozoicas en las islas Nueva Siberia, Wrangel y De Long con subducción. Los “Mobilistas”, por otro lado, también erróneamente, propusieron que América del Norte había cazado a Eurasia y que las cuencas del Ártico se habían abierto detrás de una Alaska en retirada.[6]

Continente precámbrico

En su reconstrucción del ciclo del supercontinente, Rogers propuso que el continente Ur se formara a aproximadamente 3 Ga y formara Gondwana Oriental en el Proterozoico Medio mediante su acrecentamiento hacia la Antártida Oriental; Arctica se formó alrededor de 2.5-2 Ga mediante la fusión de los escudos canadiense y siberiano más Groenlandia; y Atlantica se formó alrededor de 2 Ga por la fusión del Cratón de África Occidental y el este de América del Sur. Arctica creció alrededor de 1.5 Ga por acreción de la Antártida Oriental y Báltica para formar el supercontinente Nena. Alrededor de 1 Ga Nena, Ur y Atlantica colisionaron para formar el supercontinente Rodinia.[7]

Rogers y Santosh 2003 argumentaron que la mayoría de los cratones que existían en 2.5 Ga probablemente se formaron en una sola región simplemente porque estaban ubicados en una sola región en Pangea, razón por la cual Rogers argumentó a favor de la existencia de Arctica. El núcleo de Arctica fue Canadian Shield, que Williams et al. 1991 llamado Kenorland. Argumentaron que este continente se formó alrededor de 2,5 Ga y luego se rifó antes de reensamblarse a lo largo de las orogías de 1.8 Ga Trans-Hudson y Taltson-Thelon. Estas dos orogenias se derivan de la corteza continental (no de la corteza oceánica) y probablemente fueron intracontinentales, dejando a Kenorland intacta desde 2,5 Ga hasta el presente. Las correlaciones entre orogenias en Canadá y Siberia siguen siendo más controvertidas.[8]

Laurentia y Baltica se conectaron durante el Palaeoproterzoic tardío (1.7-1.74 Ga) y Siberia se les unió más tarde. Las reconstrucciones paleomagnéticas indican que formaron un solo supercontinente durante el Mesoproterozoico (1,5-1,45 Ga) pero los datos paleomagnéticos y las evidencias geológicas también sugieren una brecha espacial considerable entre Siberia y Laurentia y Arctica se cree que es el eslabón perdido.[9]

Microcontinente Phanerozoico

La estructura geológica actual de la región ártica es el resultado de procesos tectónicos durante el Mesozoico y el Cenozoico (250 Ma hasta el presente) cuando se formaron las cuencas Amerasiática y Euroasiática, pero la presencia de complejos metamórficos precámbricos descubiertos en la década de 1980 indicaba que existía un continente entre Laurentia, Baltica y Siberia.[10]

En la reconstrucción de Metelkin, Vernikovsky y Matushkin 2015, Arctica se formó originalmente como un continente durante el Tonian 950 Ma y se convirtió en parte del supercontinente Rodinia. Se reformó durante el Pérmico-Triásico 255 Ma y se convirtió en parte de Pangea. Durante este período, la configuración de Arctica cambió y el continente se movió desde cerca del Ecuador hasta cerca del Polo Norte, manteniendo su posición entre tres cratones principales: Laurentia, Baltica y Siberia.[1] [11] Un evento magmático extendido, la Gran provincia ígnea grande del Ártico, rompió Arctica en la parte 130-90 Ma, abrió el Océano Ártico y dejó diques flotantes en todo el Ártico.[12]

Fragmentos de este continente incluyen Kara Shelf, Nueva Islas Siberia, norte de Alaska, península de Chukotka, Inuit Fold Belt en el norte de Groenlandia y dos crestas submarinas árticas, Lomonosov y AlphaMendeleev Ridges. Las reconstrucciones más recientes también incluyen Barentsia (incluidas las placas de Svalbard y Timan-Pechora).[10] Los restos del último continente se encuentran ahora en la plataforma del mar de Kara, las nuevas islas siberianas y la plataforma adyacente, Alaska al norte de Brooks Ridge, la península de Chukchi en Siberia oriental y fragmentos en el norte de Groenlandia y el norte de Canadá y en el sumergido Lomonosov Ridge.[13]

Nomenclatura

El nombre de “Ártica” fue elegido porque el continente desde su formación y cratões que rompieron se mantuvo la mayor parte de su tiempo en las latitudes septentrionales.

Reconstrucción paleogeográfica del continente Ártica en sus etapas finales de formación (tras haberse desprendido de Kenorland), en la que pueden verse los principales cratones que lo constituían (Canadiense, Wyoming, Siberiano y Karelia –el pequeño sin señalizar–). Autor: desconocido.

Ártica fue uno de los continentes más antiguos de los que se tiene noticia, habiéndose formado hace unos 2.500 Ma (posiblemente, entre hace 2.480 y 2.450 Ma) como resultado de la fragmentación del supercontinente Kenorland. Ártica, que estaba constituido por los escudos Canadiense y Siberiano, el cratón de Wyoming (EEUU), los cratones Kola y Karelia (noroeste de Rusia y Finlandia, respectivamente) y Báltica, se alejó de los restos de Kenorland (que incluían a Atlántica, Antártida, Australia Occidental y el Sur de China –cratón de Yangtze–). Poco tiempo después de haberse separado, el propio continente Ártica se fragmentó a su vez, desprendiéndose de Báltica y Kola y permaneciendo más o menos estable hasta hace 1.800 Ma.

Hace unos 1.800 Ma el continente Ártica se unió de nuevo a Báltica y formó el supercontinente Nena, que a su vez se uniría a Atlántica para formar el gran supercontinente Columbia (ver entradas correspondientes).

Esquema que muestra a ‘grosso modo’ la disposición de los cratones más significativos que constituyeron el supercontinente Kenorland, indicándose en rojo la fragmentación que separó Ártica (parte inferior en el dibujo) del resto de Kenorland. En verde se señala la posterior separación entre Kola (cratón próximo a Báltica) y Karelia (cratón próximo a Laurentia), que también provocará la separación de Báltica. Autor: desconocido; modificado por GeoFrik.

Kenorland

Kenorland

Kenorland fue uno de los supercontinentes más tempranos sobre la Tierra. Se cree que se formó durante la Eón Arcaico hace unos 2.700 millones de años por el acrecentamiento de los cratones neoarqueozoicos y la formación de una nueva corteza continental.

No tardó mucho tiempo que los pedazos de Vaalbará se reunieran. Apenas 100Ma de su desintegración, los cratones de Kaapvaal y Pilbara, junto con los cratones Laurentia, Báltico/Fennoescandinavio, Kalahari y Yilgarn comenzaron a unirse para formar el segundo? supercontinente. De él se tienen muchas más pruebas que de Vaalbará ya que sus partes que lo integraron poseen mayor evidencia geológica (edades de rocas, similitudes, disposiciones de rocas sedimentarias, polarización y paleogeomagnetismo, generación de hierro bandeado, etc).

El desmembramiento de este supercontinente ocurre conjunto con la Gran Oxidación; período en que se generó gran parte del oxígeno atmosférico actual y que mató a casi toda la vida microbiana anaeróbica y generó la formación de hierro bandeado. Según la teoría, al desmembrarse Kenorland generó plataformas continentales que propiciaron la generación de organismos fotosintéticos y el aumento disparado de oxígeno.

Supercontinente Kenorland

Esquema que muestra a ‘grosso modo’ la disposición de los cratones más significativos que constituyeron Kenorland. Autor: desconocido.

Kenorland fue uno de los primeros supercontinentes conocidos que existieron en la Tierra. Se cree que se formó durante la era Neoarcaica, hace unos 2.700 Ma, a partir de la unión de varios cratones y de la formación de nueva corteza continental. Kenorland estaba constituido, entre otros, por los cratones Laurentia (el núcleo de la actual América del Norte y Groenlandia), Wyoming, Báltica (el núcleo de Escandinavia y del Báltico actuales), Kola (noroeste de Rusia), Karelia (Finlandia), Siberia (en Siberia), Amazonia, São Francisco y Rio de la Plata (localizados actualmente en Sudamérica), parte de Australia Occidental (debido a la unión parcial con Ur), Kalahari (actualmente localizado en el sur de África), África Occidental, el Congo y Nilo Occidental (norte-centro de África), Yangtze (Sur de China) y la actual Antártida, por lo que se cree que era mucho más grande (en extensión) que sus predecesores. La fragmentación y desaparición de este supercontinente debió de ocurrir hace unos 2.480 – 2.450 Ma.

A partir del estudio de los sistemas de diques volcánicos y de sus orientaciones paleomagnéticas, así como del estudio de secuencias estratigráficas, se ha podido realizar la reconstrucción de Kenorland. El núcleo de este supercontinente estaba constituido por el escudo Báltico, también llamado Fenoscandia, y a su alrededor se disponían el resto de los cratones.

Formación de Kenorland:

Kenorland se formó, según Halla (2005), hace unos 2.700 Ma como resultado de una serie de eventos de acreción que formaron nueva corteza continental. De acuerdo con un análisis en profundidad realizado por Barley et al. (2005), el magmatismo submarino que tuvo lugar hace 2.780 Ma culminó con la erupción de extensas plumas mantélicas hace unos 2.720 – 2.700 Ma (la gran actividad hidrotermal resultante produjo una mineralización de sulfuros masivos de origen volcánico y el depósito de formaciones de hierro bandeado (BIF) en las cuencas anóxicas relacionadas con los arcos de islas volcánicas). Posteriormente, el magmatismo fue seguido por la deformación orogénica, el emplazamiento de granitoides (de hace 2.680 Ma) y la estabilización de la litosfera continental resultantes de la colisión entre cratones.

La formación de Kenorland (y la posible colisión de los cratones de Zimbabwe y Kaapvaal hace unos 2.600 Ma, aumentando así el tamaño de Ur) proporciona una evidencia clara de que los cratones existentes durante el Arcaico Tardío habían comenzado a agregarse en continentes más grandes. NOTA: Se piensa que el cratón de Pilbara y algunos cratones de Australia Occidental, que formaban parte de Ur, también llegaron a formar parte de Kenorland, por lo que es probable que ambos supercontinentes se unieran parcialmente, colisionando por la zona de los actuales sur de África y Australia Occidental.

Ruptura de Kenorland:

La ruptura de Kenorland, ocurrida a principios de la era Paleoproterozoica (hace unos 2.500 – 2.000 Ma, durante los períodos Sidérico y Riásico), fue un acontecimiento que se prolongó en el tiempo, lo cual queda de manifiesto por la presencia de diques máficos, cuencas sedimentarias de rift y márgenes de rift en muchos continentes actuales.

El proceso comenzó con la separación del continente Árctica (que incluía los cratones de Laurentia, Wyoming, Siberia y Báltica), hace aproximadamente 2.500 Ma, del resto de la masa continental. Los estudios paleomagnéticos muestran que Kenorland estaba, en su mayor parte, localizado a bajas latitudes durante el inicio de la etapa de rifting (ocurrida hace unos 2.480 – 2.450 Ma); el escudo Báltico se situaba sobre el Ecuador y estaba unido al cratón de Laurentia, formando una sola estructura (el continente Ártica) junto con los cratones Kola, Karelia y Siberia.

Los cratones Kola y Karelia comenzaron a distanciarse entre sí hace unos 2.450 Ma, de tal modo que hace 2.400 Ma Kola se encontraba a unos 15 grados de latitud y Karelia a unos 30. Los datos paleomagnéticos muestran, además, que hace 2.450 Ma el cratón de Yilgarn (actualmente en Australia Occidental) ya no estaba conectado a Báltica–Laurentia y que, por el contrario, se hallaba a unos 70 grados de latitud (Árctica se habría separado de Kenorland). Esto implica que hace 2.450 Ma ya no existía un gran supercontinente y que hace 2.400 Ma habría habido un océano entre los cratones Kola y Karelia.

Mismo esquema que antes, pero indicando en rojo la fragmentación que separó Ártica (parte inferior en el dibujo) del resto de Kenorland. En verde se señala la separación entre Kola (cratón próximo a Báltica) y Karelia (cratón próximo a Laurentia). Autor: desconocido; modificado por Geofrik.

NOTA: El cratón de Yangtze y la zona continental que sería tiempo después Atlántica debieron de haber permanecido unidos a Ur durante un tiempo. La fragmentación terminó hace unos 2.000 Ma.

Influencias en el clima de la fragmentación de Kenorland:

La desintegración de Kenorland fue contemporánea con la glaciación Huroniana, que persistió durante 60 Ma. Las formaciones de hierro bandeado muestran su mayor extensión en este período, lo que indica un aumento masivo de la acumulación de oxígeno en la atmósfera (se estima que aumentó desde un 0,1% hasta casi un 1% de la composición de la misma). El incremento de los niveles de oxígeno causó la desaparición virtual de uno de los peores gases de efecto invernadero: el metano (que se oxidaría a dióxido de carbono y agua).

La ruptura de Kenorland provocó, además, un incremento general de las precipitaciones (pues el clima deja de ser tan seco al estar más influenciado por el mar), lo que incrementó la tasa de erosión a escala global y redujo la cantidad de dióxido de carbono atmosférico, otro gas de efecto invernadero (que ya estaba siendo mermado por la actividad metabólica de las cianobacterias).

Con la reducción de los gases de efecto invernadero, y con la baja radiación solar recibida en superficie (era inferior al 85% de lo que se recibe actualmente), se cree que la Tierra desarrolló un estado de “snowball” (bola de nieve), donde las temperaturas promedio de todo el planeta se desplomarían por debajo de la temperatura de congelación.

Anónimo (2013). “Kenorland”. Ranker. [link]

Así era la Tierra hace 2400 millones de años

De esa época era el supercontinente Kenorland. Transformó radicalmente el planeta, el clima y el desarrollo de la vida.

El supercontinente Kenorland tras la gran catástrofe del oxígeno [Ilya Bindeman, Universidad de Oregón].

Kenorland en sus orígenes [Ilya Bindeman, Universidad de Oregón]

El mayor contenido en oxígeno de la atmósfera condujo por último a un desarrollo revolucionario, por el que a los organismos dejó de serles perjudicial el oxígeno. Las plantas y los hongos pudieron al fin abandonar el océano y conquistar la tierra firme. El camino hacia la explosión cámbrica estaba preparado; en el plazo de un tiempo geológicamente muy corto aparecieron hace 540 millones de años representantes de casi todas las ramas actuales del reino animal.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Otra posible distribución de Continentes en Kenorland

Ur

Ur

Ur fue uno de los primeros continentes, que probablemente se formó hace unos 3.000 millones de años en el Eón Arcaico.1​ En el período inicial de su existencia, Ur fue probablemente el único continente en la Tierra, y es considerado por algunos como un supercontinente, a pesar de que probablemente fuera menor que la actual Australia. Hace alrededor de 1.000 millones de años Ur se unió a los continentes Nena y Atlántica para formar el supercontinente Vaalbará. Ur sobrevivió durante mucho tiempo, hasta que fue desgarrado cuando el supercontinente Pangea se rompió hace cerca de 208 millones de años en Laurasia y Gondwana. En la actualidad fragmentos de este antiguo continente forman parte de África, Australia, India y Madagascar.

Supercontinente Ur

Ur fue un hipotético supercontinente de la Tierra durante el Eón Arcaico hace 3.100 millones de años, según algunas hipótesis.

Algunas teorías mencionan que, tras el supercontinente Vaalbará surgió Ur, y que en el período inicial de su existencia era probablemente el único continente de la Tierra, por lo que se le puede considerar como un supercontinente aunque probablemente era más pequeño que la actual Australia.

Las teorías apuntan hacia la unión de este supercontinente con los continentes Atlántica y Nena (acrónimo de Norte de Europa y Norte de América), formando de este modo el supercontinente Rodinia, aunque no deja de ser una sola hipótesis.

Cratones que formaron el supercontinente Ur.

Sin embargo, existen muchas dudas sobre la existencia de Ur debido a que cratones como el de Kaapvaal en el sur de África y el de Pilbara en el oeste de Australia deberían haber formado parte tanto de él como de Vaalbará, pero la posible configuración continental contradice con las colisiones precámbricas generalizadas entre Australia y África.

Además de los mencionados cratones de Australia y Sudáfrica, lo habrían integrado los cratones de Madagascar, Zimbawe y Kalahari (África), Yilgran y Kilbaran (Australia) y Singhbhum y Dharwar (India).

Cronología

  • ~ 3.000 millones de años atrás, formación de Ur.
  • ~ 1.000 millones de años atrás, forma parte del supercontinente Rodinia.
  • ~ 300 millones de años atrás, forma parte del supercontinente Pangea.
  • ~ 208 millones de años atrás, es fragmentado al separarse Laurasia y Gondwana.
  • ~ 65 millones de años atrás, la parte africana de Ur se separa formando parte de la India.
  • ~ Presente, Ur era lo que ahora es África, Australia, India y Madagascar.

Aunque se desconoce el tamaño exacto de Ur, se estima que no debió ser mucho más grande que Australia (hay que recordar que durante el Arcaico las masas continentales no eran como los continentes actuales, sino que se trataba de protocontinentes, tierras emergidas mucho más pequeñas y, posiblemente, formadas en su mayor parte por arcos de islas volcánicas) y que tendría una morfología alargada.

Desarrollo y evolución:

El supercontinente Ur debió coexistir en el tiempo con el hipotético Vaalbará (en caso de que este supercontinente existiera realmente o no se tratara de la misma masa continental), que se habría formado hace 3.800 – 3.600 Ma y habría perdurado hasta hace unos 2.800 Ma, momento en que se habría desintegrado y desaparecido. Permaneciendo estable durante cientos de millones de años, Ur siguió existiendo, creciendo en extensión y siendo testigo del nacimiento de los supercontinentes Kenorland (que apareció hace 2.700 Ma y desapareció hace unos 2.100 Ma, al que podría haber estado parcialmente unido), Atlántica (que apareció hace unos 2.000 Ma), Nena (surgido hace unos 1.800 Ma) y Columbia (que nació hace unos 1.800 Ma como resultado de la unión entre Atlántica, Nena y otras masas continentales menores –puede que incluso englobara a Ur–).

Tras la fragmentación de Columbia hace 1.500 Ma, algunas de las masas continentales que lo formaban (como Atlántica y Nena) se unieron con Ur para constituir el supercontinente Rodinia, hace aproximadamente 1.000 Ma. Ur permaneció estable aún cuando Rodinia se fragmentó (hace unos 750 Ma), pasando a formar parte de las masas continentales que dieron forma a Pannotia hace unos 600 Ma y, tras su desaparición, a Pangea (hace unos 300 Ma).