Auroras Boreales
La aurora es un fenómeno luminoso, que aparece en las latitudes altas del planeta, y raramente se observa en latitudes medias, aunque han llegado a verse hasta en Francia.
El término aurora, comprende a dos tipos de auroras clasificadas por localización geográfica:
Aurora Boreal en el hemisferio Norte (aurora borealis)
Aurora Austral en el hemisferio Sur (aurora australis)
La aurora boreal o borealis también ha sido denominada en la literatura como «Las Luces del Norte».
La aurora del hemisferio norte fue nombrada aurora boreal (luces del norte) por el científico francés Pierre Gassendi en 1621, quien fue el primero en hacer observaciones aurorales sistemáticas. La aurora del sur fue nombrada aurora austral (luces del sur) por el capitán James Cook en 1773, cuando la observó por primera vez en el Océano Índico. Ya los filósofos griegos consideraban a la aurora del norte como un fenómeno natural, y la asociaban con el reflejo de la luz en los hielos polares.
La explicación científica nos dice que la aurora boreal es el nombre que se le da al juego de luces celestes provocadas por un fenómeno electromagnético que tiene lugar al chocar las partículas eléctricas procedentes del sol con el campo magnético de la tierra. El sol desprende partículas cargadas de mucha energía, iones, protones y electrones, los cuales viajan por el espacio a velocidades entre 320 y 704 kilómetros por segundo, es decir, necesitan tan solo entre 130 y 60 horas en llegar a la Tierra. Al conjunto de partículas que vienen del Sol se les conoce como viento solar. Cuando estas partículas interactúan con los bordes del campo magnético terrestre (ionosfera) y chocan con los gases en la ionosfera, empiezan a brillar, produciendo el espectáculo que conocemos como aurora boreal y austral. La variedad de colores, rojo, verde, azul y violeta que aparecen en el cielo se deben a los diferentes gases que componen la ionosfera.
La Aurora Boreal está en constante cambio debido a la variación de la interacción entre las ráfagas de viento solar y el campo magnético de la tierra. El viento solar genera normalmente más de 100.000 megavatios de electricidad (la producción de una central nuclear convencional es de 1000 MW diarios) produciendo una aurora, lo que puede causar interferencias con las líneas eléctricas, emisiones radiofónicas o televisivas y comunicaciones por satélite.
Las auroras no es un fenómeno exclusivo de la Tierra, puede darse en cualquier planeta que tenga un campo magnético, Son de relevancia y han sido confirmadas en Júpiter, Saturno, y se sabe, que podrían darse en Urano, Neptuno y Mercurio.
El campo magnético de Júpiter es de un orden 10 veces superior al de la Tierra. Siendo su cola tan larga que llega hasta la órbita de Saturno.
Vamos a ver que es un cinturón de Van Allen
- Los cinturones de radiación de Van Allen son áreas de la alta atmósfera que rodean la Tierra (y análogamente otros planetas como Júpiter y Saturno) por encima de la ionosfera, a una altura de 3.000 y de 000 km. respectivamente. Se sitúan sobre la zona ecuatorial y la más externa se prolongan prácticamente hasta la magnetopausa, límite entre el espacio terrestre y el espacio interplanetario. Su delimitación no está aún completamente confirmada, ya que la actividad solar y el magnetismo generan oscilaciones en sus límites, que actualmente se denominan zonas de radiación.
- El origen se debe a un fenómeno que se produce cuando las partículas atómicas (en su mayor parte protones y electrones) emitidas desde la corona solar, o viento solar son arrastradas con un trayecto helicoidal alrededor de las líneas de fuerza del campo magnético terrestre, entre los polos norte y sur. La mayor parte de las partículas de alta energía (protones) se encuentran en el cinturón interior, mientras que los electrones suelen concentrarse en el externo.
- La intensidad de radiación presente en los cinturones de Van Allen produce un elevado deterioro de los circuitos electrónicos y paneles solares de las naves espaciales, mientras que el efecto de una exposición sobre los seres vivos resulta extremadamente dañino. Por esta, razón las misiones espaciales requieren tanto de una protección eficaz ante el poder penetrativo que representa el bombardeo de partículas subatómicas, como de una perfecta planificación en la que se reduce al mínimo la exposición de los astronautas frente a dichas radiaciones.
Deja una respuesta
Lo siento, debes estar conectado para publicar un comentario.