Este Mundo, a veces insólito
Calendario
marzo 2024
L M X J V S D
 123
45678910
11121314151617
18192021222324
25262728293031

Astronáutica

(05) Salyut 5

Salyut 5 (en ruso Салют-5: Салют-5 significado Salute 5), también conocida como OPS-3, fue una estación espacial soviética. Lanzado en 1976 como parte del programa Salyut, fue la tercera y última Estación Espacial. Al principio se denominó Almaz y funcionó principalmente como una Estación Espacial militar, y en 1971 se llamó Salyut. Dos misiones Soyuz  visitaron la estación, cada una manejada por dos cosmonautas. En el regreso de los cosmonautas a la Tierra, la nave que tripulaban falló al descender en la atmósfera terrestre. Su falta oxígeno provocó que los cosmonautas murieran al entrar en la atmósfera terrestre. La Unión Soviética lloró la muerte de sus héroes. Aquel incidente significó el peligro de los vuelos espaciales.Salyut51

Salyut 5 estuvo lanzado en 18:04:00 UTC el 22 de junio de 1976. El lanzamiento tuvo lugar en el Sitio 81/23 del Cosmódromo de Baikonuren la República Socialista Soviética de Kazajistán, y utilizó un cohete cargador Proton-K 8K82K de tres etapas con el número de serial 290-02.1

Al lograr llegar a la órbita, al Salyut 5 se le asignó el International Designator 1976-057A, mientras que la Orden de Defensa Aeroespacial norteamericana se lo dio el Satélite que Cataloga Número 08911.2

Aún, la guerra fría designaba el futuro de de la Unión Soviética y de los Estados Unidos y la carrera espacial. Luego de esto, la MIR (en ruso: Мир, que en español significa “paz”, muchos dicen que significa “mundo”, pero su traducción exacta es paz) que fue una Gran Estación Espacial internacional que también, lanzó la Unión Soviética, y después de una serie de vuelos espaciales de la Unión Soviética, Estados Unidos continuó con ello legando a la Luna y lanzando demás naves espaciales.

AeronaveSalyut52

Salyut 5 era una aeronave Almaz , el último de tres para ser lanzado como estaciones espaciales después de Salyut 1 y Salyut 3. Sus predecesores, medían 14.55 metros (47.7 ft) de largo, con un diámetro máximo de 4.15 metros (13.6 ft), tenían un volumen habitable de interior de 100 metros cúbicos (3,500 cu ft), y un peso de 19,000 kilogramos (42,000 lb). La estación estuvo equipada con un solo puerto acoplado para la aeronave Soyuz, con el Soyuz 7K-T siendo la configuración en servicio en ese entonces. Dos variedades solares montadas lateralmente en el mismo punto de la estación mientras el puerto acoplado proporcionaba la energía. La estación estaba equipada con una cápsula KSI para regresar datos de búsquedas y materiales.[cita requerida]

Operación

Cuatro misiones tripuladas al Salyut 5 fueron originalmente planeadas. La primera, Soyuz 21, fue lanzada desde BSalyut53aikonur el 6 de julio de 1976, y atracada a las 13:40 UTC del día siguiente.3 El objetivo primario de la misión Soyuz 21 a bordo del Salyut 5 era la conducción de experimentos militares, no obstante la búsqueda científica también era conducida, la cual incluía estudiar peces de acuario en microgravedad y observar el sol. La tripulación también condujo una conferencia televisada con alumnos escolares. Los astronautas Boris Volynov y Vitali Zholobov quedaron a bordo del Salyut 5 hasta el 24 agosto, cuándo regresaron a la tierra aterrizando a 200 km al suroeste de Kokchetav. Se esperaba que la misión durase más tiempo, pero la atmósfera dentro del Salyut 5 se vio contaminada con humo de ácido nítrico proveniente de una filtración de combustible, la cual afectó la condición psicológica y física de la tripulación, requiriendo de un aterrizaje de emergencia.

El 14 de octubre de 1976, el Soyuz 23 fue lanzado llevando a los astronautas Vyacheslav Zudov y Valery Rozhdestvensky a la estación espacial. Durante la aproximación para el acoplamiento al día siguiente, un sensor defectuoso incorrectamente detectó un inesperado movimiento lateral. El sistema de acoplamiento automático de la aeronave Igla desprendió los propulsores de maniobra de la nave espacial en un intento de parar el movimiento inexistente. A pesar de que la tripulación era capaz de desactivar el sistema Igla, la aeronave había gastado demasiado combustible para volver a intentar el acoplamiento bajo control manual. El 16 de octubre el Soyuz 23 regresó a la Tierra sin completar los objetivos de la misión.Salyut54

La última misión al Salyut 5, Soyuz 24, fue desplegada el 7 de febrero de 1977. Su tripulación se compuso por los astronautas Viktor Gorbatko y Yury Glazkov, quién condujo reparaciones a bordo de la estación y deSalyut55scargó el aire que había sido informado como contaminado. Los experimentos científicos fueron llevados a cabo, incluyendo la observación del sol. La tripulación partió rumbo devuelta el 25 de febrero. La corta misión aparentemente se relacionó a que el Salyut 5  comenzó a agotar el propulsor para sus principales motores y sistema de control de actitud.4

Soyuz 21

La cuarta misión prevista, la cual habría sido designado como Soyuz 25 si se hubiese concretado, estuvo pretendida para visitar la estación por dos semanas en julio de 1977.5 Su tripulación habría sido compuesta por los astronautas Anatoly Berezovoy y Mikhail Lisun; la tripulación de relevo para la misión Soyuz 24. La misión se canceló por la escasez de propulsor anteriormente mencionada.6 La aeronave qué se construyó para la misión Soyuz 25 fue reutilizada posteriormente para la misión Soyuz 30 hacia el Salyut 6. Como no podía ser re abastecida, y ya no contaba con el combustible para sostener las operaciones tripuladas, la cápsula recuperable KSI fue expulsada y regresada a la Tierra el 26 de febrero. Salyut 5 fue desorbitado el 8 de agosto de 1977 y quemado mientras reingresaba  a la atmósfera de la Tierra.7

Estadísticas Station
Distintivo de llamada Salyut 5 [cita requerida]  
Tripulación 2  
Lanzamiento 22 de de junio de de 1976
18:04:00 UTC
 
Cohete portador Protón-K  
Plataforma de lanzamiento Baikonur Sitio 81/23  
Reentrada 8 de agosto de 1977  
Masa 19.000 kg  
Largo 14.55 metros (47,7 pies)  
Diámetro 4.15 metros (13,6 pies)  
Presurizado volumen 100 metros cúbicos (3.500 pies cúbicos)  
Perigeo 223 kilómetros (120 millas náuticas)  
Apogeo 269 ​​kilómetros (145 millas náuticas)  
Orbital inclinación 51.6 °  
Periodo orbital 89 minutos  
Días en órbita 412 días  
Días ocupados 67 días  
Número de órbitas 6666  
Distancia recorrida Aprox 270409616 kilómetros (168,024,745 millas)  

(06) Salyut 6

Salyut 6 (En ruso: Салют-6; lit. Saludo 6), DOS-5, fue una estación espacial soviética, el octavo vuelo como parte del programa Saliut. Lanzada el 29 de septiembre de 1977 por el cohete Protón, es la primera estación espacial de “segunda generación”. Salyut 6 poseía varios avances revolucionarios superiores a los de las estaciones soviéticas anteriores, la cual sin embargo se asemejaba totalmente en el diseño. Estos incluyen la adSalyut601ición de un segundo puerto de atraque, un nuevo sistema de propulsión principal y el instrumento científico más importante de la estación, el telescopio multiespectral BST-1M. La suma de un segundo puerto de atraque hizo posibles los traspasos de tripulación y por primera vez el reabastecimiento de la estación por los cargueros no tripulados Progress, lo cual permitió al programa evolucionar de visitas de corta duración a expediciones de larga duración, marcando el inicio de la transición a las estaciones de investigación multimodulares en el espacio.

Desde 1977 hasta 1982, la Saliut 6 fue visitada por cinco tripulaciones de larga duración y siete de corta, incluyendo los cosmonautas de los países del Pacto de Varsovia como parte del programa Intercosmos. Estas tripulaciones fueron responsables de llevar a cabo las primeras misiones de la Salyut 6, incluyendo astronomía, observaciones de los recursos de la Tierra y el estudio de la adaptación humana al espacio. Siguiendo a la finalización de esas misiones y el lanzamiento de su sucesor, la Saliut 7, la estación espacial Salyut 6 fue destruida el 29 de julio de 1982, casi cinco años después de su lanzamiento.

La Saliut 6, lanzada en un cohete Proton 8K82K el 29 de septiembre de 1977, marcó el paso de las estaciones de desarrollo de ingeniería a las operaciones rutinarias y unió los elementos más efectivos de cada una de las estaciones anteriores. Su sistema de navegación, formado por el equipo semiautomático Delta para representaSalyut602r la órbita de la estación y el sistema Kaskad para controlar su orientación, fue basado en el usado en la Salyut 4 al igual que su sistema de energía, que consistía en un trío de paneles solares orientables que juntos producían a máximo rendimiento 4 kilovatios de energía en sus 51 metros cuadrados. El sistema de regulación térmico de la estación, el cual hizo uso de un sofisticado aislamiento y radiadores también derivados de los usados en la Salyut 4. Además, la Saliut 6 hizo uso de un sistema ambiental utilizado por primera vez en la Salyut 3, y se controló su orientación usando giroscopios que fueron probados primero en esa estación.

La característica más importante de la Saliut 6 fue, sin embargo, la adición de un segundo puerto de atraque en el extremo de popa de la estación, lo cual permitió acoplar dos naves espaciales a la vez. Esto a su vez posibilitó a las tripulaciones residentes recibir expediciones “de visita” mientras permanecian a bordo, y facilitó los traspasos de tripulación que tuvieran lugar. Tales traspasos, con una expedición desalojando la estación solo despúes de la llegada de la siguiente hizo posible que el codiciado objetivo de la ocupación ininterrumpida estuviese un paso más cerca. La primera tripulación de larga duración en visitar la estación rompió el récord de permanencia en el espacio establecido por la estación estadounidense Skylab, permaneciendo 96 días en órbita, mientras que la expedición más larga duró 185 días en órbita. Algunas de las expediciones de visita fueron trasladadas como parte del programa Intercosmos junto con los cosmonautas no soviéticos. Vladimír Remek de Checoslovaquia fue el primer astronauta en no ser estadounidense o soviético, visitando la Salyut 6 en 1978. Además la estación también fue visitada por cosmonautas de Hungría, Polonia, Rumanía, Cuba, Mongolia, Vietnam y Alemania oriental.Salyut604

La parte posterior de los dos puertos fue designada para permitir el reabastecimiento con las naves no tripuladas Progress. Estos cargeros, los cuales llevaron suministros y equipamiento extra de repuesto, ayudaron a garantizar que la tripulación tuviese siempre algún trabajo científico útil que hacer a bordo de la estación. En total, doce vuelos Progress entregaron más de 20 toneladas de equipamiento, suministros y combustible.

La adición del puerto de acoplamiento extra hizo necesaria la adopción del sistema de propulsión de doble cámara Almaz derivado de los usados por primera vez en las Saliut 3 y Saliut 5 con las dos toberas del motor cada una produciendo 2.9 kilonewtons de empuje a cada lado del puerto de popa. La Saliut 6 introdujo un sistema de propulsión unificado, los motores y propulsores de control de la estación utilizaban dimetilhidrazina asimétrica y tetróxido de nitrógeno almacenados a partir de depósitos a presión, lo que permitía que la capacidad de los tanques de los cargueros Progress fuese aprovechada al máximo. La totalidad del motor y el combustible almacenado se encontraban dentro de una bahía no presurizada en la parte trasera de la estación, la cual era del mismo diámetro que el principal compartimento presurizado. Sin embargo, el reemplazo del motor Soyuz usado en estaciones anteriores junto con la bahía dio como resultado que la estación mantuviese una longitud global similar a la de sus predecesores.

Para permitir los paseos espaciales, la Saliut 6 estaba equipada con una compuerta de apertura hacia el interior EVA en el compatimento de transferencia delantero que podía ser utilizada como esclusa de aire de una manera similar al sistema utilizado en la Saliut 4. Este compartimento contenía dos nuevos trajes espaciales semirrígidos que permitieron una mayor flexibilidad que los trajes anteriores, y podían ser puestos en menos de cinco minutos en caso de emergencia. Por último, la estación ofreció unas mejoras considerables en las condiciones de vida sobre las anteriores, con maquinaria insonorizada, con la tripulación provista de camas para dormir y equipando la estación con una ducha y un extenso gimnasio.Salyut605

El instrumento principal llevado a bordo en la estación fue el telescopio multiespectral BST-1M, el cual podía llevar a cabo observaciones astronómicas en el espectro infrarrojo, ultravioleta y submilimétrico usando un espejo de 1.5 metros de diámetro que se hizo funcionar en condiciones criogénicas rondando los -269°C. El telescopio podía ser operado sólo cuando la Saliut 6 estaba en la cara nocturna de la Tierra, y tenía su tapa cerrada el resto del tiempo.

El segundo instrumento en importancia fue la cámara multiespectral MKF-6M que llevó a cabo observaciones de los recursos de la Tierra. Era un diseño mejorado de la cámara probada por primera vez en el Soyuz 22, la cámara capturaba un área de 165×220 kilómetros con cada imagen con una resolución de 20 metros. Cada imagen era capturada simultáneamente en seis grupos de casetes de 1200 fotogramas que requerían un reemplazo regular debido a los efectos de la radiación. La Saliut 6 también disponía de una cámara de trazado de mapas topográficas y estereoscópicas con una longitud central de 140 milímetros, la cual capturaba imágenes de 450×450 kilómetros con una resolución de 50 metros en el espectro visible e infrarrojo, y que podía ser operada de forma remota o por las tripulaciones residentes. Las capacidades fotográficas de la estación fueron por lo tanto amplias, y el Ministerio de Agricultura soviético había plantado en Ucrania y en Voronezh una serie de cultivos seleccionados específicamente para examinar la capacidad de las cámaras.

Para ampliar aún más sus capacidades científicas, la Saliut 6 estaba equipada con 20 ventanillas de observación, dos esclusas de aire para sacar equipamiento al espacio o expulsar basura, y varias piezas de aparatos para llevar a cabo experimentos biológicos. Más tarde, cuando la estación ya estaba en órbita, un carguero Progress entregó un telescopio externo, el observatorio de radio KRT-10, que incorporó una antena direccional y cinco radiómetros. La antena estaba desplegada en el ensamblaje de acoplamiento trasero con su controlador que permanecia en el interior de la estación, y fue usada para observaciones astronómicas y metereológicas.Salyut606

La Saliut 6 fue primero abastecida por naves tripuladas Soyuz, que llevaban a cabo la rotación de las tripulaciones y fueron también utilizadas en los casos de una evacuación de emergencia. Las naves atracaban automáticamente haciendo uso del nuevo sistema de acoplamiento automático Igla, y fueron utilizados también por las tripulaciones al regresar a la Tierra al final de su vuelo.

La Saliut 6 fue la primera en ser capaz de reabastecerse con los cargueros Progress, aunque sólo podían atracar en el puerto trasero ya que los conductos que permitían a la estación reponer sus fluidos no estaban disponibles en el puerto frontal. Los cargueros atracaban automáticamente gracias al Igla y eran descargadas por los cosmonautas a bordo, mientras que la transferencia de combustible se llevaba a cabo automáticamente bajo la supervisión de la Tierra.

Además de las naves Soyuz y Progress, despúes de que se hubiera ido la última tripulación, la Salyut 6 fue visitada por una nave logística de transporte experimental llamada Cosmos 1267 en 1982. La nave, conocida como TKS, fue originalmente diseñada para el programa Almaz y probó que los módulos de gran tamaño podrían atracar automáticamente con estaciones espaciales, un paso importante hacia la fabricación de estaciones multimodulares como la Mir o la Estación Espacial Internacional.

La estación recibió 16 tripulaciones de cosmonautas, incluyendo seis tripulaciones de larga duración, con la larga expedición de 185 días de duración. Las tripulaciones residentes fueron identificadas con el prefijo EO , y al mismo tiempo las misiones de corta duración con el prefijo EP.

  1. El 10 de diciembre de 1977 la primera tripulación residente, Yuri Romanenko y Georgi Grechko, llegaron en la Soyuz 26 y permanecieron a bordo de la Saliut 6 durante 96 días.
  2. El 15 de junio de 1978, Vladimir Kovalyonok y Aleksandr Ivanchenkov (Soyuz 29) llegaron y permanecieron a bordo durante 140 días.
  3. Vladimir Lyakhov y Valery Ryumin (Soyuz 32) llegaron el 25 de febrero de 1979 y permanecieron 175 días.
  4. El 9 de abril de 1980 Leonid Popov y Valery Ryumin (Soyuz 35) llegaron y permanecieron 185 días, la expedición más larga. A bordo, el 19 de julio, enviaron sus saludos en directo a los olímpicos y les desearon una feliz apertura de los juegos en una comunicación entre la estación y el estadio Lenin, donde se celebró la ceremonia de apertura de los Juegos Olímpicos de 1980. Aparecieron en el marcador del estadio y sus voces fueron traducidas a través de altavoces.
  5. Una misión de reparación, compuesta por Leonid Kizim, Oleg Makarov, y Gennady Strekalov (Soyuz T-3) trabajaron en la estación durante 12 días a partir del 27 de noviembre de 1980.
  6. El 12 de marzo de 1981 la última trupulación residente, Vladimir Kovalyonok y Viktor Savinykh, llegaron y permanecieron durante 75 días.

https://en.wikipedia.org/wiki/Salyut_6

http://www.britannica.com/topic/Salyut

Estadística de la misión
Call Sign: Saliut 6
Lanzamiento: 29 de septiembre de 1977
06:50:00 UTC
Baikonur,
U.R.S.S.
Reentrada: 29 de julio de 1982
Longitud: 15.8 metros
Diámetro: 4.15 metros
Volumen presurizado: 90 metros³
Ocupada: 683 días
En órbita: 1,764 días
Número de
órbitas:
28,024
Apogeo: 275 km (171 mi)
Perigeo: 219 km (136 mi)
Periodo: 89.1 min
Inclinación 51.6 deg
Distancia
viajada:
~1,136,861,930 km
(~706,413,253 mi)
Masa orbital: 19,824 kg

Salyut 6 Motores Salyut603
Primer plano de los motores de Salyut 6 como se muestra en Moscú en 1981.
Crédito: © Mark Wade

Salyut609

Salyut608

Salyut607

(07) Salyut 7

La estación espacial soviética Salyut 7 (Салют-7) fue la última del programa Saliut. Al igual que su antecesora, la estación espacial Saliut 6, era más avanzada que las cinco estaciones lanzadas anteriormente. Ambas tenían escotillas de atraque en ambos extremos, un sistema de abastecimiento de combustible mejorado y alojamientos más cómodos. Los tripulantes accedían a ellas con naves Soyuz, y eran abastecidas por naves no tripuladas Progress.Salyut701Salyut702

Fue lanzada al espacio el 19 de abril de 1982 empleando un cohete Protón de tres etapas. Su tamaño era de entre 13 y 16 metros y estaba construida con una aleación especial de aluminio y acero, en forma similar a las cápsulas de exploración submarina, para mantener el mismo nivel de presión en el espacio, que sobre la superficie terrestre. Permitía una tripulación máxima de tres cosmonautas. Estuvo habitada entre 1982 y 1986. El complejo formado por la Salyut 7 y el módulo Cosmos 1686 (TKS-4) culminó su vida operativa y reentró en la atmósfera terrestre sobre Argentina el 7 de febrero de 1991.

Características principales

  • Longitud: cerca de 16 m
  • Diámetro máximo: 4,15 m
  • Espacio habitable: 90 m³
  • Peso en el lanzamiento: 19.824 kg
  • Cohete de lanzamiento: Protón
  • Inclinación orbital: 51,6°
  • Potencia eléctrica: 4,5 kW
  • Naves de transporte: Soyuz-T, Progress y TKS
  • Número de puertos de atraque: 2
  • Total de misiones tripuladas realizadas: 12
  • Total de misiones no tripuladas realizadas: 15
  • Misiones de larga duración: 6

Salyut 7 con módulo acoplado.

En la Salyut 7 residieron seis tripulaciones estables.Salyut703

El 26 de septiembre de 1983 la Soyuz T-10-1, tripulada por Vladimir Titov y Gennady Strekalov, destinada a la estación espacial, tuvo un accidente en el lanzamiento, por lo que la misión fue abortada y la tripulación fue expulsada con un sistema de rescate.

A la estación también se acoplaron dos módulos TKS, el primero el 2 de marzo de 1983, el TKS-3, lanzado bajo el nombre de Cosmos 1443. Se separó de la estación el 14 de agosto. Por su parte, el TKS-4 fue lanzado bajo el nombre de Cosmos 1686 el 27 de septiembre de 1985. Se contempló la posibilidad de recuperar el módulo TKS usando el transbordador espacial Salyut704Buran, pero el primer vuelo del mismo fue retrasado hasta finales de 1988, cuando ya la estación había sido abandonada y su órbita era demasiado baja.

Modelo de la Saliut 7 con una Soyuz (a la izquierda) y con una Progress (a la derecha) acopladas.

Salyut706Salyut705El 7 de febrero de 1991, a las 01:00 (hora local), los restos de la Salyut 7 cayeron en Argentina, impactando gran parte de su fuselaje en los Andes, Buenos Aires y Entre Ríos. Para evitar accidentes, los controladores pusieron a girar la nave, tratando de controlar el impacto y de que éste se hiciera en el Océano Atlántico. Obviamente fallaron todos esos intentos, y el complejo satelital cayó convertido en una bola de fuego. Algunos de los fragmentos tocaron tierra cerca de la ciudad de Capitán Bermúdez, a unos 400 kilómetros de Buenos Aires. Entre los restos también se encontró la sección de la escotilla, caída en la provincia de Entre Ríos, y parte del fuselaje y paneles con gran cantidad de componentes electrónicos. Actualmente se encuentran en el predio del Observatorio Astronómico de Oro Verde, perteneciente a la Asociación Entrerriana de Astronomía. Algunos fragmentos incendiaron un basurero en Puerto Madryn, Chubut, otros fueron a parar en una zona cordillerana de San Juan y también cayeron en el océano Atlántico. En la localidad de Piedritas, provincia de Buenos Aires, el policía Leandro Rodríguez recogió una esfera metálica y otras esferas fueron recuperadas Venado Tuerto y Firmat, provincia de Santa Fe.

Salyut709

Salyut708

Salyut710

(08) Mir (estación espacial)

Mir (en ruso Мир, significa paz o mundo) fue el nombre de la famosa estación espacial originalmente soviética, que después del colapso de la URSS pasó a ser rusa. La primera estación espacial de investigación habitada de forma permanente de la historia, y la culminación del programa espacial soviético. Estaba prevista para que estuviera funcionando durante tan sólo 5 años; lo hizo durante 13 años. A través de numerosas colaboraciones internacionales, fue accesible a cosmonautas y astronautas.Mir1

La Mir fue ensamblada en órbita al conectar de forma sucesiva distintos módulos, cada uno lanzado de forma separada desde el 19 de febrero de 1986 hasta el año 1996. Estaba situada en una órbita entre los 300 y 400 kilómetros de la superficie terrestre, orbitando completamente la Tierra en menos de dos horas. Sirvió como laboratorio de pruebas para numerosos experimentos científicos y observaciones astronómicas, estableciendo récords de permanencia de seres humanos en el espacio. Tras un incendio en febrero de 1997, la estación empezó a quedarse vieja y obsoleta, con la consecuente cadena de fallos que prosiguió hasta su desorbitación y desintegración en la atmósfera. Fue destruida de forma controlada el 23 de marzo de 2001, precipitándose sobre el Océano Pacífico.

Lanzamiento 19 de febrero de 1986
(Cosmódromo de Baikonur, URSS)
Re-entrada 23 de marzo de 2001
Tripulación 3
Perigeo 386 km
Apogeo 398 km
Período orbital 89,8 minutos
Inclinación orbital 51,6 grados
Órbitas por día 16,13
Días en órbita 5.519
Días ocupada 4.592
Distancia recorrida 3.638.470.307 km
Masa 124.340 kg
Volumen del área habitable 350 m³

El concepto de la nueva serie de estaciones espaciales que iba a sustituir a la serie Saliut fue decretado el 17 de febrero de 1976, con un diseño mejorado de la base Salyut-DOS 17K. Inicialmente constaba de la base del bloque DOS, que estaría equipada con cuatro puertos de atraque, dos en cada extremo, al igual que las Salyut, y dos puertos adicionales en una esfera de acoplamiento en la parte frontal de la estación. Finalmente, en agosto de 1978, evolucionó a un puerto en la parte de popa y cinco puertos en proa, en forma de esfera (nodo).

El programa Mir se consolidó con la aprobación del programa militar Almaz, de Vladimir Chelomei, en febrero de 1979. Los puertos de acoplamiento se reforzaron para dar cabida a las 20 toneladas de la estación sobre los módulos en base de la nave espacial TKS. El NPO Energia era el responsable de la estación; sin embargo, el trabajo fue subcontratado a KB Salyut, el brazo de desarrollo de Khrunichev debido a la tarea en curso de Energía, Salyut 7, Soyuz-T, y en el progreso de naves espaciales. KB Salyut comenzó a trabajar en 1979, y los primeros bocetos de la Mir fueron publicados en 1982. Entre los nuevos sistemas incorporados a la estación incluían el ordenador de control de vuelo Salyut 5B y giroscopios provenientes del Almaz.

Mir2Hasta la Mir, los soviéticos experimentaban en la estación Salyut 7. Dos meses antes, ésta estación se quedó vacía al enfermar uno de los cosmonautas que trabajaban allí. Pero con una batería solar de 76 metros cuadrados, capacidad para tres personas y seis muelles de atraque para otros vehículos espaciales, la Mir dejaba obsoleta a la Salyut 7.

A los 21 días del lanzamiento del primer módulo de la estación Mir, a las 15:30 hora de Moscú, partían hacia ella los cosmonautas que la bautizarían; Leonid Kizim y Vladímir Soloviov, transportados por la nave soviética Soyuz T-15. Dos días después, se ensamblaban con la Mir, a una altura de 400 km. A los 50 días del acoplamiento, el 6 de mayo, los cosmonautas partieron con la Soyuz T-15 y 500 kg de material y herramientas hacia la antigua Salyut 7. Después de 52 días de reparaciones regresaron a la Mir; éste sería el primer viaje entre dos estaciones orbitales de la historia. Tras 125 días ininterrumpidos en órbita, realizando un total de 31 horas y 40 minutos de salidas extravehiculares en ocho salidas, regresaron a la Tierra.

Cinco meses después del regreso de la primera tripulación, se produce el acoplamiento de una nave no tripulada de suministro, la Progress 27, a la estación espacial, aportando combustible, agua, comestibles y diversos equipos. Tras ello, se prepara la segunda misión tripulada para batir todos los récords. El 8 de febrero de 1987 llegan en la Soyuz TM-2 Yuri Romarenko y Alexandr Laveikin, ingeniero de vuelo, realizando su primer viaje espacial. Al entrar en la estación encontraron pan y sal, símbolo de bienvenida que les dejaron sus antecesores.

Apertura internacional

El 5 de abril de 1987 fue lanzado para acoplarse al módulo base Mir (o Mir 1) el módulo astrofísico Kvant, diseñado por ingenieros soviéticos, británicos, holandeses, alemanes y técnicos de la Agencia Espacial Europea; pero la maniobra de acoplamiento no puede realizarse: un objeto extraño atascado en la puerta de atraque lo impide. Los cosmonautas realizaron entonces un paseo espacial para poder acoplarlo. Ya con cuatro módulos, Mir 1, Soyuz TM-2, Progress 29, lanzada en marzo, y el Kvant. De esta manera, la URSS logra el mayor complejo orbital jamás realizado hasta la fecha. La euforia duró un mes; el consumo eléctrico del Kvant es demasiado elevado para la estación. Para solucionarlo fue necesario un paseo extravehicular, instalando nuevas baterías solares. Dos meses más tarde, Alexandr Viktorenko, Alexandr Alexandrov y el sirio Mohamed Faris, iniciaron la primera misión a la Mir con tripulación internacional, surgiendo otro problema; Laveikin sufría de arritmia. Regresó junto a Viktorenko y Faris seis días después de estar en la estación. Romarenko continuó en la Mir para batir el récord de permanencia.

El 23 de diciembre de 1987 llegaron a la estación los soviéticos Vladímir Titov, Musa Maranov y Antoli Levchenko con el objetivo de establecer la primera tripulación permanente. Dos días antes de terminar el año, descendieron Romanenko (estableciendo un nuevo récord de permanencia en el espacio, 327 días ininterrumpidos) Alexandov y Levchenko.

IntercosmosMir3

Logo del programa Intercosmos.

En el verano de 1988 comenzaron las misiones conjuntas con los países satélites de la URSS. El 7 de junio de 1988 el búlgaro Alexander Alexandrov y los soviéticos Anatoli Soloviov y Víctor Savinji, iniciaron el embarque con destino a la Mir. En la misión de 10 días, se incluyeron espectrometrías del territorio búlgaro. Abdul Mohamed, primer cosmonauta afgano, junto a Vladímir Liajov, piloto, y Valery Poliakov, médico, completaron esta misión, con objetivos como experimentación biológica y estudios sobre los efectos de la microgravedad en los cosmonautas (con más de ocho meses habitando la Mir). Al llegar a la estación, Mohamed abrazó el Corán y entonó una plegaria. La misión fue exitosa, pero al regresar a la Tierra se produjeron momentos de tensión y pánico, puesto que la nave, la Soyuz TM-5, sufrió una cadena de fallos en las maniobras de aproximación, por lo que tuvieron que quedarse en órbita con poco oxígeno a bordo. La situación es tan desesperada que la NASA ofreció su ayuda, pero los soviéticos la rechazaron. Finalmente consiguieron iniciar la re-entrada volviendo sanos y salvos.

El 26 de noviembre de 1988 el francés Jean-Loup Chrétien se unió a la exploración espacial en la Mir con los soviéticos Volkov y Krikaliev. A punto de terminar 1988, Musa Manarov y Vladímir Titov, tras batir de nuevo el récord de permanencia, 366 días ininterrumpidos, regresaron junto al astronauta francés a la Tierra.

Fin de la época soviéticaMir4

La nueva política de restricción de gastos en el programa espacial de la URSS afectó a la Mir. Alexandr Volkov, Serguéi Krikaliov y Valeri Poliakov regresaron dejando vacía la estación espacial. Pero afortunadamente para la Mir, las medidas de recorte presupuestario solo afectaron durante tres meses. El 5 de septiembre de 1989 Alexandr Viktorenko y Alexandr Serebrov en la Soyuz TM-8 se convirtieron en la siguiente misión a la Mir, acoplándose a la estación el 8 de septiembre. Los cosmonautas llevaron consigo un sillón espacial, el cual permitía moverse libremente por el espacio en las salidas extravehiculares, sin necesidad de arneses de sujeción. En noviembre de ese año, el módulo Kvant 2 se acopló a la estación con un nuevo equipo para la obtención de oxígeno.

El astronauta alemán Ewald Reinhold junto a Vasili Tsibliyev, en 1997.

El 19 de febrero de 1990, la Soyuz TM-8 partió hacia la Tierra mientras la Soyuz TM-9 lo hacía hacia la Mir. Anatoli Soloviov y Alexandr Baladin descubrieron que su Soyuz se averió en el despegue, no pudiendo regresar a la Tierra. En julio tuvieron que realizar un paseo de siete horas (el más largo de la historia) para reparar la nave. Guennadi Mannakov y Guennadi Strekalov relevaron a los cosmonautas en la Soyuz TM-10 (lanzada el 1 de agosto de 1990). El 4 de diciembre el japonés Toyohiro Akiyama se convirtió en el primer periodista en el espacio y en visitar la Mir. Estuvo durante seis días compartiendo la estación con los cosmonautas que ya estaban ahí y con Musa Manarov y Víctor Afanésiev, con los que viajó. El gobierno soviético hizo un contrato con la cadena de TV japonesa que ascendía a 8,5 millones de €.

Finalmente, y marcando el final de la época soviética de la estación espacial, el cosmonauta soviético Serguéi Krikaliov despegó hacia la Mir cuando todavía era soviético en la Soyuz TM-11, el 2 de diciembre de 1990. Con un retraso de seis meses, o sea, diez meses después, aterrizó en un nuevo país, la CEI, el remanente político de la desintegrada Unión Soviética.

Euromir

En las siguientes misiones una serie de europeos, algunos en representación de la ESA, formaron parte de las tripulaciones; la británica Helen Sharman en la Soyuz TM-12 (lanzada el 18 de mayo de 1991), el austríaco Franz Viehböck en la Soyuz TM-13 (2 de octubre de 1991), el alemán Klaus-Dietrich Flade, en la Soyuz TM-14 (17 de marzo de 1992), y en posteriores misiones los franceses Michel Tognini y Jean-Piere Haigneré.

En 1994 Yelena Kondákova se convirtió en la primera rusa enviada al espacio desde 1982. Junto a ella fueron en la Soyuz TM-20 el alemán Ulf Merbold y el veterano cosmonauta Alexandr Viktorenko, conformando la misión ‘Euromir 94’. Kondákova permanecería en la Mir unos ocho meses para el estudio del efecto de la microgravedad en la mujer.

Época ruso-estadounidense: programa Shuttle-MirMir5

De derecha a izquierda: la astronauta norteamericana Shannon Lucid, el comandante de la misión Yury I. Onufrienko, y el ingeniero de vuelo Yury V. Usachev, durante la misión Mir-21, el 25 de marzo de 1996.

Yury I. Onufrienko realizando una salida extravehicular, en 1996.

Estados Unidos había planeado construir la estación espacial Freedom como homóloga a la Mir, pero recortes en el presupuesto de la NASA echaron atrás el proyecto. Pasados los años, al final de la Guerra fría, el programa Shuttle-Mir combinó las capacidades de la eMir6stación Mir y los transbordadores de Estados Unidos. La Mir en órbita proveía de un laboratorio científico amplio y habitable en el espacio exterior. Los transbordadores espaciales visitantes servían de medio de transporte de personas y suministros, así como de ampliaciones temporales de las zonas de trabajo y vivienda, creando la mayor nave espacial de la historia, con una masa combinada de 250 toneladas. Las visitas de los transbordadores estadounidenses emplearon un collar de atraque modificado, diseñado originalmente para el transbordador soviético Burán.

En junio de 1992, el presidente de EE.UU. George H. W. Bush y el presidente ruso Borís Yeltsin se mostraron de acuerdo en unir esfuerzos para la exploración espacial; un astronauta estadounidense embarcaría en la Mir, y dos cosmonautas rusos lo harían en el transbordador espacial estadounidense. En septiembre de 1993 el vicepresidente estadounidense Al Gore y el primer ministro ruso Víctor Chernomirdin anunciaron los planes para una nueva estación espacial, la cual se llamaría después como la Estación Espacial Internacional o ISS (de sus siglas en inglés). Ellos se mostraron de acuerdo en que en preparación de ese nuevo proyecto, los EE.UU. deberían involucrarse en el proyecto Mir, bajo el nombre en código “Fase Uno” (la ISS sería la “Fase Dos”). Los transbordadores espaciales se encargarían del transporte de personas y suministros a la Mir y a cambio los astronautas estadounidenses vivirían en la Mir varios meses. De ese modo EE.UU. podrían aprender y compartir la experiencia rusa de los viajes de larga duración en el espacio.Mir7La nave estadounidense Discovery, en la misión STS-63 (3 de febrero de 1995), fue la primera nave estadounidense que visitó la Mir, aunque no se acopló. La pilotaba además por vez primera una mujer, Eillen Collins, y entre la tripulación se encontraba el cosmonauta ruso Vladímir Titov, que estuvo durante un año en la estación anteriormente. La nave se aproximó hasta los 10 metros, distancia con la que el propio cosmonauta ruso Polyakov, que se encontraba en el módulo Mir, pudo asomarse y saludar a los estadounidenses. Un mes más tarde, Norman Thagard se convirtió en el primer estadounidense en viajar con los rusos y atracar en la Mir a bordo de la Soyuz TM-21. La NASA pagó entonces la cifra de 312,5 millones de € por enviar durante un periodo de cuatro años astronautas a la Mir. La nave despegó el 14 de marzo de 1995. El 29 de junio, la lanzadera Atlantis atracó en la Mir: hasta 10 personas se juntaron en el espacio (6 estadounidenses y 4 rusos), batiendo el récord de personas juntas en órbita. Thagard estuvo 115 días en la estación, sintiéndose de manera forzosa aislado cultural y lingüísticamente. Su estancia en la estación espacial fue compartida con los cosmonautas rusos Dezhurov y Strekalov, regresando los tres en la Atlantis (STS-71). Unos meses más tarde, el 2 de septiembre, llegó a la Mir el alemán Thomas Reiter, en la Soyuz TM-22, convirtiéndose en el primer astronauta europeo en realizar un paseo por el espacio. El mismo año el ruso Valeri Poliakov batió otro nuevo récord de permanencia en el espacio (438 días ininterrumpidos, que es el récord absoluto hoy en día). Tras el paso del canadiense Chris Hadfield por la estación a finales de 1995, en septiembre de 1996 Shannon Lucid le arrebató a la cosmonauta Kondákova el récord femenino de permanencia en el espacio (188 días), así como a su compatriota Thagard el récord de permanencia estadounidense.

Etapa final de la Mir

Mir8El cosmonauta ruso Vasily Tsibliev, realizando una salida extravehicular.

Desde principios de marzo de 1995, siete astronautas estadounidenses pasaron de forma consecutiva 28 meses en la Mir. Durante su estancia en la estación espacial hubo varios momentos difíciles debidos a emergencias graves. El 23 de febrero de 1997 se produjo un gran incendio a bordo. Dicho incendio colapsó las unidades de filtración de aire de la nave, manteniéndose las llamas durante algo más de 7 minutos, obligando a la tripulación a llevar puestas las mascarillas. A bordo se encontraban el norteamericano Jerry Michael Linenger, que llegó en el transbordador Atlantis en la misión STS-81 (12 de enero de 1997), y los cosmonautas rusos Alexandr Lazutkin y Basili Tsibliyev, de la misión Soyuz T-25, que despegó a la Mir el 10 de febrero. Las reparaciones de los daños causados por el fuego comenzaron en abril de ese año con herramientas llegadas desde la Tierra.

Pero con el recién llegado astronauta con doble nacionalidad británica y norteamericana, Collin Michael Foale, de la misión STS- 84, y cuando los problemas parecían haber quedado en anécdota, el 25 de junio de ese mismo año se produjo una colisión con una nave de carga no tripulada Progress M-34: en la maniobra de aproximación de la nave Progress, se produjo un choque en el módulo Spektr, provocando la descompresión del módulo por culpa del agujero en el fuselaje de la estación. Uno de los paneles solares quedó seriamente dañado, conllevando al fallo del suministro eléctrico en toda la Mir. Los tripulantes tuvieron que desconectar los otros tres paneles del módulo dañado para poder cerrar la escotilla de acceso, pero al hacerlo también desconectaron el cable de suministro del ordenador central, dejando a la estación en completa oscuridad. Michael Foale sustituyó a Vasili Tsibliyev en el mando de la misión, pues éste padeció de problemas cardiovasculares. Vasili fue además objeto de las culpas desde Rusia, pasando por alto que el cosmonauta tuvo que realizar la fase de acoplamiento de la nave Progress a la Mir de manera manual, sin un radar ucraniano imprescindible para dicho acoplamiento, puesto que la instalación de este radar era excesivamente cara. El hecho es que, sin las herramientas adecuadas, Vasili poco pudo hacer para evitar el impacto.Mir9

Los cosmonautas Pavel Vinogradov (ingeniero) y Anatoli Soloviov partieron hacia la Mir, en la Soyuz Tm-26, en un intento de arreglar la estación con preparación específica y herramientas, y de paso relevar a los estresados tripulantes. Michael Foale se quedó en la estación. Tras un exhaustivo trabajo, con pequeñas interrupciones que lo hicieron más complicado como es el caso de que Pavel tenía un guante defectuoso, empezaron a conectar cables para arreglar el problema. Para ello, hicieron una salida extravehicular dentro del dañado módulo Spektr, que se encontraba despresurizado. Millones de personas estuvieron durante horas viendo en directo por televisión el transcurso de la operación. En ambas ocasiones, con el incendio y la colisión, se evitó la evacuación completa de la Mir (siempre existía una nave de escape Soyuz para regresar a la Tierra), aunque por un estrecho margen.

La cooperación entre Rusia y EE.UU. estuvo lejos de ser fácil. Discusiones, falta de coordinación, problemas de lenguaje, diferentes puntos de vista de las responsabilidades de los otros e intereses contrapuestos causaron muchos problemas. Después de los accidentes el Congreso estadounidense y la NASA consideraron que EE.UU. debía abandonar el programa por la falta de seguridad de los astronautas, sin embargo el administrador de la NASA Daniel S. Goldin decidió continuar con el programa. En junio de 1998, el último astronauta estadounidense de la Mir, Andy Thomas, dejó la estación a bordo del transbordador espacial Discovery.Mir10

Mir11

Polyakov observando la llegada del transbordador Discovery (6 de febrero de 1995)

(09) Estación Espacial Internacional

La Estación Espacial Internacional, (en inglés, International Space Station o ISS) es un centro de investigación en la órbita terrestre, cuya administración, gestión y desarrollo está a cargo de la cooperación internacional. El proyecto funciona como una estación espacial peISS1rmanentemente tripulada, en la que rotan equipos de astronautas e investigadores de las cinco agencias del espacio participantes: la Agencia Administración Nacional de la Aeronáutica y del Espacio (NASA), la Agencia Espacial Federal Rusa (FKA), la Agencia Japonesa de Exploración Espacial (JAXA), la Agencia Espacial Canadiense (CSA) y la Agencia Espacial Europea (ESA).4 Está considerada como uno de los logros más grandes de la ingeniería.

La Agencia Espacial Brasileña participa a través de un contrato separado con la NASA. La Agencia Espacial Italiana tiene semejantemente contratos separados para las varias actividades no incluidas en el marco de los trabajos de la ESA en la ISS (donde participa Italia también completamente).

De muchas maneras la ISS representa una fusión de las estaciones espaciales previamente previstas: la Mir-2 de Rusia, la estación espacial estadounidense Freedom, el previsto módulo europeo Columbus y el JEM (Módulo Japonés de Experimentos). Los primeros planes de montar una gran estación internacional remontan a los años 1980. La estación se planificó en ese entonces también bajo el nombre Alpha.ISS2

La ISS está en construcción desde 1998 y en el presente es el objeto artificial más grande en órbita terrestre. Completa una vuelta aproximadamente cada 92 minutos y se encuentra a unos 400 km aproximadamente de la superficie de la Tierra. 5 de altura (datos de febrero de 2015), aunque su altura puede variar debido a la fricción atmosférica y a las repetidas propulsiones. La inclinación es de 51,6°.

La estación ha alcanzado dimensiones aproximadas de unos 110 m × 100 m × 30 m, con una gran superficie habitable. Según los planes, debería mantenerse en operaciones por lo menos hasta el año 2024.6ISS3

Gracias a la estación, hay presencia humana permanente en el espacio, pues al menos dos personas la han habitado desde el 2 de noviembre de 2000. La estación se mantiene hoy día principalmente por las lanzaderas rusas Soyuz y la nave espacial Progress. Anteriormente el mantenimiento se hacía gracias a los Space Shuttle norteamericanos, que operaron hasta el año 2011, puesto que posteriormente el programa de transbordadores espaciales de Estados Unidos fue cancelado debido a que sus exorbitantes costos no correspondían al recorte general de gastos del gobierno de ese país.

En sus primeros tiempos, la estación tenía una capacidad para una tripulación de tres astronautas, pero desde la llegada de la Expedición 20, estuvo lista para soportar una tripulación de seis astronautas. Antes de que llegara el astronauta alemán Thomas Reiter, de la ESA; que se unió al equipo de la Expedición 13 en julio de 2006, todos los astronautas permanentes pertenecían a los programas espaciales ruso, estadounidense o canadiense. Entretanto, la ISS ha sido visitada por 205 personas de dieciséis países y ha sido también el destino de los primeros turistas espaciales.ISS4

Debido a lo extenso de su descripción, uso, etc. Se adjuntan unas webs al efecto:

https://es.wikipedia.org/wiki/Estaci%C3%B3n_Espacial_Internacional

http://www.huffingtonpost.es/2015/11/07/estacion-espacial-internacional_n_8490220.html

https://en.wikipedia.org/wiki/Assembly_of_the_International_Space_Station

Características

En líneas generales, se puede describir la Estación Espacial Internacional como un gigantesco mecano situado en órbita alrededor de la Tierra, a 400 km de altura. Sus dimensiones son de aproximadamente 109 m de longitud total y 88 m de ancho, con una masa cercana a las 420 toneladas. El volumen habitable alcanza a unos 916 m3, con lo que sobrepasa en amplitud y complejidad todo lo que existe hasta la fecha. Puede acoger hasta seis astronautas permanentemente, quienes se suceden según las exigencias de las misiones. Su energía es proporcionada por los paneles solares más grandes que jamás se hayan construido, de una potencia de 84 kW.

Resumen de las característicasISS5

(datos de 2012)7

  • Longitud del módulo: 51 metros (167,3 pies)
  • Longitud del rack: 109 metros (357,5 pies) (Prácticamente el equivalente a un campo de fútbol, incluida su área exterior)
  • Longitud de los paneles solares: 73 metros (239,4 pies)
  • Masa: 419 455 kilogramos (924 739 libras)
  • Volumen habitable: 388 metros cúbicos (13 696)
  • Volumen presurizado: 916 metros cúbicos (32 333 pies cúbicos)
  • Producción de energía: 8 paneles solares = 84 kilovatios
  • Líneas de código de software: aproximadamente 2,3 millones
  • Número de personas por cada expedición: 6
  • Laboratorios: 4
  • Velocidad: 27 743 km/h
  • Altura aproximada: 400 km

La estación ha progresado de manera sostenida, no sólo en sus características técnicas, sino también en cuanto a la calidad de los espacios habitables, proporcionando mayor confort para las expediciones de larga duración. Actualmente tiene un espacio habitable comparable con una casa estándar de cinco dormitorios, tiene además dos baños y posee un gimnasio. Desde mayo de 2014 se encuentra tripulada por la expedición 40 hasta septiembre de 2014.ISS6

La historia de la Estación Espacial Internacional comenzó el 20 de noviembre de 1998, cuando el cohete ruso Protón colocó en órbita el módulo ruso Zaryá, el módulo principal y más grande, diseñado para dotar a la estación espacial de la energía y capacidad de propulsión iniciales. El 2 de diciembre la NASA puso en órbita el nodo Unity a través de su transbordador espacial Endeavour.8

Los paneles solares fotovoltaicos de la Estación Espacial Internacional.

El 12 de julio de 2000 se añadió el segundo módulo de servicio ruso Zvezdá (pronunciado /zviozda/) que aportaba los sistemas de soporte vital de la Estación Espacial y preparaba la estación, para recibir a sus primeros astronautas. El 11 de octubre de 2000 se añadió sobre el nodo Unity la estructura integrada ITS Z1 que permite comunicarse con la Tierra. El 2 de noviembre llegan los primeros tripulantes a bordo de una Soyuz lanzada el 31 de octubre de 2000. Un mes después se añadió el primer módulo fotovoltaico que proporcionaba energía solar a toda la estación.

Al año siguiente llegó a la estación espacial el laboratorio más importante, el Destiny, de fabricación estadounidense. Fue acoplado a la estación el 7 de febrero de 2001 mediante el transbordador Atlantis. El 19 de abril de 2001 fue colocado el primer brazo de la ISS, de fabricación canadiense. Con el brazo SSRMS también llegaron un pequeño módulo italiano y una antena UHF. El 12 de julio de ese mismo año se añadió una cámara de descompresión para que los tripulantes pudieran salir de la estación espacial y dar los primeros paseos espaciales. El 14 de septiembre del 2001 se añadió un módulo de atraque ruso con una cámara de descompresión.

El 8 de abril de 2002 se acopló el segmento central ITS S0 del futuro armazón de 91 metros que soportará los grandes paneles solares de los extremos de la ISS. El brazo SSRMS canadiense que se había colocado en el módulo Destiny fue trasladado al segmento central ITS S0 el 5 de junio de ese mismo año. El 7 de octubre se colocó el segmento de estribor ITS S1 del armazón de la estación. El armazón principal se completó el 23 de noviembre de 2002 con el segmento de babor ITS P1.ISS7

El 27 de febrero de 2004, los tripulantes Michael Foale y Alexandr Kaleri realizaron el primer paseo espacial que involucraba a la totalidad de la tripulación. La mayoría de los objetivos del paseo, incluyendo la instalación de equipo externo, se lograron antes de que se abortara la misión debido a un problema de refrigeración en el traje de Kalery HL.

El 28 de julio de 2005 llegó a la estación el módulo italiano de carga Raffaello a través del transbordador Discovery de la NASA.

El 27 de junio de 2006 una pieza de basura espacial que posteriormente fue identificada como el satélite militar estadounidense Hitch Hiker 1 lanzado en 1963, y ya fuera de servicio, pasó a aproximadamente 2 kilómetros de la ISS (ésta se mueve a unos 7,7 km/s). Este suceso provocó una situación de alarma y se iniciaron preparativos para una evacuación de urgencia de la Estación Espacial. Este acercamiento estuvo monitorizado por técnicos del CCVE ruso y el Centro de la NASA en Houston, y concluyó sin incidentes. Se estimó que la pieza de chatarra espacial tenía una masa de 79 kilos.

El 7 de julio de 2006 el transbordador Discovery se acopló a la ISS con éxito. Entre la tripulación del Discovery estaba el astronauta alemán Thomas Reiter que junto con el estadounidense Jeff Williams y el ruso Pavel Vinogradov formaron la tripulación permanente del complejo orbital. Con la llegada del astronauta de la ESA la estación pasa de una tripulación permanente de dos astronautas a tres.

La Estación Espacial Internacional y el Transbordador Espacial Discovery listos para acoplarse.

El 8 de junio de 2007, el transbordador Atlantis (misión STS-117) parte para la Estación Espacial Internacional para instalar unos nuevos paneles solares9 tarea que realiza con éxito. El día 10 se detecta una grieta en la cubierta térmica del transbordador Atlantis que debe repararse en vuelo.10 El día 14 se produce un fallo informático grave que deja sin agua, luz y capacidad de orientación a la estación espacial. En el peor de los casos, ésta debería haber sido desalojada, pero el fallo se soluciona y los sistemas vuelven a funcionar con normalidad.11

El 17 de junio de 2007 la astronauta Sunita Williams se convierte en la mujer que más tiempo seguido ha estado en el espacio, al completar 188 días y 4 horas fuera de nuestro planeta.12

El 23 de octubre de 2007 partió el módulo de fabricación italiana Harmony hacia la ISS con la misión STS-120 y se montó provisionalmente tres días más tarde en Unitiy, tomando finalmente su posición definitiva en el extremo del laboratorio Destiny. Con un peso cercano a las 15 toneladas, su objetivo es servir como puerto de enlace para los laboratorios europeos y japoneses.13

En febrero de 2008 se añadió el módulo ColISS9umbus europeo y en junio el transbordador Discovery visitó nuevamente la Estación Espacial Internacional y añadió componentes nuevos, de los cuales destaca el módulo principal del esperado Kibo Science Laboratory.

En marzo de 2009 se agregó el cuarto y último módulo de paneles solares (el S6) por la misión STS-119. En mayo de 2009 la Estación ya podía albergar a seis tripulantes dentro de ella.

El último elemento constructivo del módulo Kibo se instaló en junio por la misión STS-127. En noviembre de 2009, el módulo de acoplamiento ruso Poisk llegó a la estación. En febrero de 2010 se instaló el nodo de empalme Tranquility (Node 3) con la cúpula de vista panorámica Cupola. En mayo de 2010 le siguió el módulo ruso Rassvet y el MPLM Leonardo en marzo de 2011. El 23 de octubre de 2010 la ISS efectuó el relevo de la Mir, el vehículo espacial que había estado durante más tiempo (3644 días) ininterrumpidamente tripulado por seres humanos. Ese récord se ha extendido ahora a 4304 días. El experimento del AMS se instaló en mayo de 2011 con el penúltimo Transbordador STS. En el verano de 2013 la estación se completó además con el módulo de laboratorio ruso Naúka o Módulo laboratorio multipropósito.

Tras el acuerdo de los países participantes de operar la estación en conjunto hasta por lo menos 2020, Rusia planea la construcción de otros tres módulos que surgen de una concepción nueva. En 2012 se instalará primeramente un módulo de acoplamiento esférico en el extremo inferior del MLM Nauka. Aquí se acoplarían en 2014 y 2015 dos grandes módulos nuevos (NEM 1 und 2), de investigación y de energía, respectivamente.

En diciembre de 2010, la masa de la estación bordeaba ya las 370 toneladas y su estructura tenía una longitud de 109 metros. Dado que la envergadura definitiva ya se había alcanzado desde la instalación de los primeros paneles solares, la ISS fue desde entonces, y continúa siendo hasta la fecha, la estación espacial más grande que se ha construido en la historia.ISS8

Contribuyentes primarios.     Países con contrato con la NASA.

Los astronautas dividen su tiempo en la estación entre los laboratorios (Destiny, Kibo y Columbus), el módulo de servicio Zvezda (donde está la “cocina”, por ejemplo), el observatorio Cupola y la escotilla presurizada Quest, en la que se preparan los tripulantes que van a realizar una actividad extravehicular, es decir, un paseo espacial por el exterior de la estación. Cuando no están desempeñando sus labores diarias, tienen asignado un tiempo muy preciso para su aseo personal, para comer, para hacer ejercicio y para dormir, y en cada módulo se realizan diferentes tareas:

  • Zvezda: Módulo de servicio ruso, construido de modo similar al módulo principal de la estación espacial Mir. Contiene compartimentos para dormir y para el aseo.
  • Zarya: Dedicado principalmente al almacenaje y para la propulsión de la estación, que necesita elevar periódicamente la altura de su órbita.
  • Harmony y Unity: Nodos de conexión entre otros módulos. Harmony, además, alberga sistemas de generación de aire, electricidad, reciclaje de agua y otros servicios esenciales.
  • Kibo: Laboratorio japonés, es el módulo de mayor tamaño de la ISS. Está formado por un módulo presurizado y dos secciones para experimentos, una de ellas expuesta al espacio.
  • Columbus: Laboratorio europeo.
  • Destiny: Laboratorio de la NASA.
  • Tranquility: Nodo de conexión con el módulo observatorio Cupola, que también contiene el equipamiento de soporte vital, los sistemas para el reciclaje de agua y generación de oxígeno y la cinta de correr.
  • Quest: Escotilla para la preparación de las actividades extravehicular. Allí se guardan los trajes espaciales.
  • Rassvet y Poisk: Nodos para el atraque de la Soyuz, en los que sus tripulantes disponen también de una cámara para aclimatarse a la presión atmosférica de la ISS.

Figura 1: La estación espacial definitiva deberá desarrollar hasta el año 2015 numerosos experimentos científicos, y para ello consta de seis laboratorios presurizados y 36 agregados de carga. Los experimentos incluyen las siguientes áreas: investigaciones humanas; biotecnológica; ciencias de materiales, fluidos y combustión; biología gravitacional; ciencias de la tierra y del espacio.
(1)
El laboratorio americano incluye 11 lugares experimentales, incluyendo facilidades para investigación humana y de materiales, combustión y ciencia de fluidos.
(2) Los laboratorios japoneses incluyen 10 departamentos presurizados y 10 sitios expuestos, incluyendo facilidades para ensayos de materiales y biología gravitacional.
(3) Los laboratorios rusos incluyen facilidades para ciencias de la vida, materiales y otros.
(4) Los laboratorios europeos generales tienen 12 lugares de experimentos, incluyendo un laboratorio para estudios biológicos y varios laboratorios de combustión.
(5) Una centrífuga permitirá a los investigadores variar la fuerza gravitacional, permitiendo comparaciones en tiempo real con ensayos de baja.
(6) Diversos instrumentos de observación de la Tierra y del espacio y tecnologías relacionadas.

(10) Tiangong 1

Imagen de la estación Tiangong 1.Tiangong1

Tiangong 1 (chino simplificado: 天宫一号, pinyin: Tiāngōng yīhào, literalmente «Palacio celestial 1») es una estación espacial china en fase de construcción y que se encuentra en órbita desde el 29 de septiembre de 2011.1 La puesta en órbita, originalmente planificada para finales de 2010,2 fue más tarde pospuesta a 2011.3 Según ha informado la Agencia Espacial China, la estación contará con un laboratorio espacial de aproximadamente 8 toneladas de peso en la que participarán las misiones espaciales Shenzhou 8, Shenzhou 9 y Shenzhou 10 durante sus dos primeros años de funcionamiento.

El objetivo es crear una estación espacial de tercera generación, comparable a la Mir. Este programa es autónomo y no tiene relación con otros países que realizan actividades en el espacio.1 El programa comenzó en 1992 como el Proyecto 921-2. En enero de 2013, China sigue adelante en un gran programa multifase de construcción que dará lugar a una gran estación espacial en 2020.2

China lanzó su primer laboTiangong3ratorio espacial, Tiangong 1, el 29 de septiembre de 2011. Tras Tiangong 1, un laboratorio espacial más avanzado completado con la nave de carga, llamado Tiangong 2, será construido. Tiangong 3 continuará desarrollando estas tecnologías. El proyecto culminará con una estación orbital grande, que constará de un módulo principal de 20 toneladas, 2 módulos de investigación más Tiangong2pequeños y embarcación de transporte de carga.3 Dispondrá de alojamiento para tres astronautas durante largos periodos2 y está previsto que se complete justo en la fecha en la que la Estación Espacial Internacional está programada para ser retirada.4

Fase de laboratorio espacial

Los esfuerzos de China para desarrollar una estación espacial de órbita baja terrestre comenzarán con una fase de laboratorio espacial, con el lanzamiento de los tres módulos espaciales Tiangong.2

Tiangong 1 “objetivo de acoplamiento”

Tiangong5Escotilla de acoplamiento del Tiangong (CCTV).

Tiangong 1

El objetivo de acoplamiento chino consiste en un módulo de propulsión (recurso) y un módulo presurizado para los experimentos, con un mecanismo de acoplamiento en cada extremo. El puerto de acoplamiento de Tiangong6la sección de experimentos soporta acoplamiento automatizado.10 Su longitud es de 10,5 metros y el diámetro es de 3,4 m.2 Tiene una masa de 8.000 kg. Fue lanzado el 29 de septiembre de 2011 y está destinado a estancias cortas de una tripulación de tres astronautas.

Modelo del sistema de acoplamiento (CCTV).

El laboratorio espacial está diseñado principalmente para probar sistemas de navegación y acoplamiento. A 10,5 metros de largo y 4,5 metros de ancho, contiene instrumentos científicos y sistemas de soporte vital, pero no pretenden ser un puesto de avanzada permanente chino en el espacio.

La nave Shenzhou 10 fue lanzada al espacio desde el desierto de Gobi, y se espera que una vez en la órbita, se conecte con el módulo Tiangong-1.

Preparando la Shenzhou-8.Tiangong7

China lanzó hoy un cohete con tres astronautas a bordo, a completar una misión de 15 días en su laboratorio espacial que está en desarrollo para convertirse en una estación china en el espacio.

La nave Shenzhou 10 fue lanzada al espacio desde el desierto de Gobi, y se espera que una vez en la órbita, se conecte con elTiangong9 módulo Tiangong-1. Los astronautas – dos hombres y una mujer – probarán los sistemas del módulo y realizarán experimentos científicos, además de realizar una transmisión para estudiantes en la Tierra.

China logró conectar una nave a la estación Tiangong-1 en junio del año pasado, demostrando la capacidad tecnológica y logística para crear su propia estación. Esta es la primera misión de larga duración que los astronautas chinos hayan realizado en el espacio.

Tiangong10

Interior del Tiangong-1 (CCTV)Tiangong11

Esta pantalla tomada el 26 de junio de 2012 muestra los astronautas chinos que están llevando a cabo ensayos científicos en el módulo de laboratorio espacial Tiangong-1 agitando las manos en el Tiangong-1. (Xinhua)

 

La estación espacial china ‘Tiangong-1’ cae en el Pacífico sur

Pekín 2 ABR 2018 – 18:41 CEST

Una imagen por radar de la estación espacial china Tiangong-1. AP REUTERS-QUALITY

El Tiangong-1, el primer laboratorio espacial que China lanzó al espacio, se desintegró este lunes (02/04/2018), durante su reentrada en la atmósfera terrestre. La nave, que se desplazaba de forma descontrolada desde 2016, puso fin a más de seis años en el espacio a las 8.15 hora china (2.15 hora española) al precipitarse en la remota región central del Pacífico sur.

“La mayoría de los dispositivos del módulo fueron eliminados y destruidos durante la reentrada”, informó en un comunicado la Oficina de Ingeniería Espacial Tripulada de China. El Tiangong-1 entró en la atmósfera una media hora antes de lo previsto por la misma agencia, que había estimado inicialmente que la zona de caída sería el Atlántico Sur, frente a las costas de la ciudad brasileña de Sao Paulo. Su entrada, finalmente, se produjo en el vasto océano Pacífico, a miles de kilómetros al noreste de Nueva Zelanda.

Lanzado en 2011, Tiangong-1 sirvió como laboratorio para tres misiones tripuladas -la última partió de allí en junio de 2013- y como un experimento para una futura estación espacial más grande. En marzo de 2016, China anunció que había dejado de recibir datos de telemetría de la plataforma y meses más tarde reconocía que la estación volvería a entrar en la atmósfera, aunque creían que sucedería antes, en la segunda mitad de 2017. Ahora se tambalea de forma incontrolada.

La Agencia Espacial Europea (ESA) explicó hace algunos días que solo será posible conocer el lugar de reentrada aproximado con un día de antelación. De momento, se sabe que la estación caerá en algún punto situado entre los 43ºN y 43ºS de latitud, una amplísima franja del mundo que comprende España, Francia, Grecia, Portugal o Italia por el norte, pero también Australia, Nueva Zelanda y Argentina por el sur. Sin embargo, la probabilidad de impacto será máxima justo en los extremos de esa franja, donde se encuentra nuestro país.

Una de las razones por la que es tan difícil determinar el viaje de Tiangong-1 es que este ocupa una órbita terrestre baja (LEO, por sus siglas en inglés), relativamente cerca de la superficie de la Tierra en comparación con otras órbitas, como la órbita media y la geoestacionaria, un espacio lejano donde residen los satélites de comunicación. Los objetos en LEO «se mueven realmente rápido», explica Vishnu Reddy, investigador de la Universidad de Arizona (EE.UU.), que rastrea la vuelta de Tiangong-1 con un sensor óptico de apenas 1.500 dólares que construyó junto a su colega Tanner Campbell en cuatro meses. A 17.400 mph, Tiangong-1 orbita la Tierra cada 90 minutos.

 

 

 

 

(01) – Sputnik 1

El Sputnik 1 (en ruso: Спутник-1, pronunciación: [ˈsputnʲɪk], que significa satélite) lanzado el 4 de octubre de 1957 por la Unión Soviética fue el primer satélite artificial de la historia.1Sputnik1

El Sputnik 1 fue el primero de varios satélites lanzados por la Unión Soviética en su programa Sputnik, la mayoría de ellos con éxito. Le siguió el Sputnik 2, como el segundo satélite en órbita y también el primero en llevar a un animal a bordo, una perra llamada Laika. El primer fracaso lo sufrió el Sputnik 3.1 2

La nave Sputnik 1 fue el primer intento no fallido de poner en órbita un satélite artificial alrededor de la Tierra. Se lanzó desde el Cosmódromo de Baikonur en Tyuratam, 370 km al suroeste de la pequeña ciudad de Baikonur, en Kazajistán (antes parte de la Unión Soviética). La palabra sputnik en ruso significa “compañero de viaje” (“satélite” en astronáutica). El nombre oficial completo, se traduce sin embargo como “Satélite Artificial Terrestre” (ISZ por sus siglas en ruso).1 2

El Sputnik 1 fue el primero de una serie de cuatro satélites que formaron parte del programa Sputnik de la antigua Unión Soviética y se planSputnik2eó como una contribución al Año Geofísico Internacional (19571958), establecido por Organización de las Naciones Unidas. Tres de estos satélites (Sputnik 1, Sputnik 2 y Sputnik 3) alcanzaron la órbita terrestre. El Sputnik 1 se lanzó con el vehículo de lanzamiento R-7 y se incineró durante su reentrada el 4 de enero de 1958.1 2

El Sputnik 1 tenía una masa aproximada de 83 kg, contaba con dos transmisores de radio (20,007 y 40,002 MHz) y orbitó la Tierra a una distancia de entre 938 km en su apogeo y 214 km, en su perigeo. El análisis de las señales de radio se usó para obtener información sobre la concentración de los electrones en la ionosfera. La temperatura y la presión se codificaron en la duración de los pitidos de radio que emitía, indicando que el satélite no había sido perforado por un meteorito.1 2

El satélite artificial Sputnik 1 era una esfera de aluminio de 58 cm de diámetro que llevaba cuatro largas y finas antenas de 2,4 a 2,9 m de longitud. Las antenas parecían largos bigotes señalando hacia un lado. La nave obtuvo información perteneciente a la densidad de las capas altas de laSputnik3 atmósfera y la propagación de ondas de radio en la ionosfera. Los instrumentos y fuentes de energía eléctrica estaban alojadas en una cápsula que también incluía transmisores de radio operando a 20,007 y 40,002 Mhz. (alrededor de 15 y 7,5 m en longitud de onda), las emisiones se realizaron en grupos alternativos de 0,3 s de duración. El envío a tierra de la telemetría incluía datos de temperatura dentro y sobre la superficie de la esfera.1 2

Debido a que la esfera estaba llena de nitrógeno a presión, el Sputnik 1 dispuso de la primera oportunidad de detectar meteoritos, aunque no detectó ninguno. Una pérdida de presión en su interior, debido a la penetración de la superficie exterior, se habría reflejado en los datos de temperatura.1 2

La nave Sputnik 1
Organización Unión Soviética
Contratistas Serguéi Koroliov
Tipo de misión Estudios astronómicos
Satélite de Tierra
Lanzamiento 4 de octubre de 1957 a las 19:12 UTC
Cohete R-7/SS-6 ICBM
Reingreso 4 de enero de 1958
Duración 3 meses
NSSDC ID 1957-001B
Masa 83,6 kg
Axis 6 955,2 km
Excentricidad 0,05201
Inclinación 65,1º
Período orbital 96,2 minutos
Apogeo 939 km
Perigeo 215 km
Órbitas 1400
Web 1
Tipo de Misión Tecnología
Operador OKB-1
Designación de Harvard 1957 alfa 2
SatCat № 00002
Duración de la misión 92 días [1]
Órbitas completado 1,440 [1]
Propiedades Spacecraft
Fabricante OKB-1 Ministerio de Industria radioeléctricos
Masa de lanzamiento 83.60 kg (184.3 libras)
Inicio de la misión
Fecha de lanzamiento 04 de octubre 1957, 19:28:34
Cohete Sputnik 8K71PS
Lugar de lanzamiento Baikonur 1.5
Fin de la misión
Último contacto 26 de octubre 1957
Fecha Decay 04 de enero 1958
Parámetros orbitales
Sistema de referencia Geocéntrico
Régimen Bajo Tierra
Semieje mayor 6,955.2 km (4,321.8 millas)
Excentricidad 0.05201
Perigeo 215,0 kilómetros (133,6 millas)
Apogeo 939,0 kilómetros (583,5 millas)
Inclinación 65.100 °
Período 96,2 min
Época 1956

Sputnik4

(02) – Explorer 1

El Explorer 1, oficialmente 1958 Alpha 1,7 fue el primer satélite artificial puesto en órbita terrestre por Estados Unidos. Fue lanzado a las 22:48 horas EST del 31 de enero (03:48 del 1 de febrero en UTC) de 1958 desde el Complejo de Lanzamiento 26 (LC-26) de la estación de la Fuerza Aérea de Cabo Cañaveral a bordo del cohete Juno I, como parte del Año Geofísico Internacional y en respuesta al lanzamiento del Sputnik I y del Sputnik II por parte de la Unión Soviética, con lo que se dio así comienzo a la carrera espacial, estrechamente relacionada con la Guerra Fría.8Explorer1

Fue el primer vehículo espacial que detectó los cinturones de radiación de Van Allen,9 bautizados así en honor a James van Allen, quien había dirigido el diseño y la construcción de la instrumentación científica del Explorer 1, que envió datos durante algo menos de cuatro meses, hasta que sus baterías se agotaron. El pequeño satélite permaneció en órbita hasta el 31 de marzo de 1970, cuando se produjo su reentrada en la atmósfera y se precipitó al océano Pacífico. Fue el primer lanzamiento del programa Explorer, una larga serie de más de noventa satélites estadounidenses.Explorer2

El programa estadounidense de satélites terrestres comenzó en el año 1954 como una propuesta conjunta del Ejército y de la Armada de los Estados Unidos llamada Project Orbiter, que pretendía poner en órbita un satélite científico durante el Año Geofísico Internacional. La idea, que utilizaría un misil Redstone como lanzador, fue rechazada en 1955 por el gobierno del presidente Dwight D. Eisenhower, que se declinó por el Project Vanguard de la Armada, que no contemplaba el uso de un misil sino el de un cohete pensado expresamente para lanzamientos civiles.10 Tras el lanzamiento del satélite soviético Sputnik I el 4 de octubre de 1957, el Project Orbiter inicial fue retomado como programa Explorer con la intención de estar al mismo nivel que la Unión SovExplorer3iética.11

El Explorer 1 fue diseñado y construido por el Jet Propulsion Laboratory (JPL) al tiempo que la Army Ballistic Missile Agency (ABMA) modificaba un cohete Jupiter-C para dar cabida a la carga de pago, lo que dio origen al Juno I. El diseño del Jupiter-C utilizado para el lanzamiento ya se había probado en ensayos de vuelo y reentrada para el misil balístico de alcance intermedio PGM-19 Jupiter. Gracias al trabajo conjunto, ABMA y JPL completaron la construcción del Explorer 1 y la modificación del Jupiter-C en ochenta y cuatro días. A pesar de su rapidez, la URSS pudo colocar en órbita un segundo satélite, el Sputnik II, el 3 de noviembre de 1957. Además, el intento de la Armada estadounidense de situar su primer satélite en órbita el 6 de diciembre de 1957 con el Vanguard TV3 fracasó.12

El diseño y la construcción de Explorer 1 se llevaron a cabo por el Jet Propulsion Laboratory del Instituto de Tecnología de California bajo la dirección del Dr. William Hayward Pickering. Fue el segundo satélite que llevó carga de pago, sólo por detrás del Sputnik II.Explorer4

Presentaba una forma fuselada muy esbelta, con 203 cm de largo y 15,9 cm de diámetro.5 Del peso total del satélite, que era de 13,97 kg, la instrumentación sumaba 8,3 kg. La sección de instrumentación en la parte frontal del satélite y la estructura del cohete de cuatro etapas —una versión reducida del MGM-29 Sergeant— orbitaban como un único cuerpo girando alrededor de su eje de revolución 750 veces por minuto. Es reseñable la diferencia de peso y forma del Explorer 1 respecto al primer satélite ruso, el Sputnik I, que pesaba 83,6 kg y tenía forma esférica.

La transmisión de datos de los aparatos científicos a la base en tierra se realizaba mediante dos antenas. Un transmisor de 60 mW alimentaba una antena dipolo formada por dos antenas de ranura de fibra de vidrio situadas en el cuerpo del satélite cuya frecuencia de operación era de 108,03 MHz; otro transmisor de 10 mW operando a 108,00 MHz alimentaba cuatro latiguillos flexibles que conformaban una antena de torniquete.1 13

Debido al escaso espacio disponible en el satélite y a los requisitos de bajo peso, la instrumentación de la carga útil fue diseñada teniendo como pilares su simplicidad y su alta fiabilidad. Se usaron transistores consistentes en aparatos de germanio y silicio, una tecnología muy nueva por aquellos años para la que su utilización en el mundo espacial supuso un importante desarrollo. Asimismo, es el primer uso documentado de transistores en el programa de satélites de Estados Unidos.14 En total, el Explorer 1 contaba con veintinueve transistores, además de algunos adicionales del detector de micrometeoritos de la Armada.15 La potencia eléctrica del satélite era generada por unas pilas de mercurio, que por sí solas suponían un 40% del peso de la carga de pago.Explorer5

La estructura que encerraba la sección de instrumentos se pintó a rayas, alternando blanco y verde oscuro para proveer de control térmico pasivo al satélite. Las proporciones de las rayas se determinaron estudiando los intervalos de luz y sombra basados en momento de lanzamiento, trayectoria, órbita e inclinación.

La carga útil del Explorer 1 consistía principalmente en un instrumento de rayos cósmicos (Iowa Cosmic Ray Instrument) sin grabador de cinta para datos que no se modificó a tiempo para poder incorporar uno. Los datos recibidos en tiempo real por la estación en tierra eran por tanto muy escasos y desconcertantes, mostrando frecuencias de conteo normales o ningún conteo en absoluto. Posteriormente, la misión del Explorer 3, que sí incluía una grabadora para los datos, pudo completar la información adicional necesaria para comprobar los datos enviados por el Explorer 1.

La instrumentación científica a bordo del Explorer 1 fue diseñada y construida por el Dr. James van Allen, de la Universidad de Iowa. Contenía:18

  • Un tubo de Geiger-Müller omnidireccional Anton 314, diseñado por el Dr. George Ludwig del Labratorio de Radiación Cósmica de Iowa para la detección de rayos cósmicos. Era capaz de detectar protones de energía superior a 30 MeV y electrones de energía superior a 3 MeV. Gran parte del tiempo este instrumento se encontraba saturado. Dejó de funcionar el 16 de marzo de 1958, a causa de las baterías.19
  • Cinco sensores de temperatura (uno interno, tres externos y uno en la ojiva de la parte frontal).
  • Un detector acústico para detectar impactos de micrometeoros (polvo cósmico). Cada impacto en la superficie de la nave sería función de la masa y la velocidad. Su área efectiva era de 0,075 m2 y el límite medio de sensibilidad era 2,5 × 10−3 g cm/s;20 21
  • Un detector de malla, también usado para detectar impactos de micrometeoros. Estaba formado por doce placas conectadas paralelas montadas en un anillo de fibra de vidrio. Cada una de las placas se encontraba envuelta por dos capas de cable de aleación de níquel con aislamiento, que tenían un diámetro de 17 µm (21 µm incluyendo el aislamiento de esmalte), de tal manera que se cubría completamente una superficie de 1 cm2 En caso de que impactara un micrometeoro de unos 10 µm de longitud, rompería el cable y detendría la conexión eléctrica, para así dejar grabado el suceso.20 21
Información general
Organización Army Ballistic Missile Agency1 2 3 4
Contratos principales Jet Propulsion Laboratory1 2 3 4
Estado Destruido en la reentrada
Satélite de Tierra1 2 3 4
Fecha de lanzamiento 1 de febrero de 1958, 03:48 (UTC)
(31 de enero de 1958, 22:48 hora local)1 2 3 4
Vehículo de lanzamiento Jupiter-C, Juno I1 2 3 4
Sitio de lanzamiento Estación de la Fuerza Aérea de Cabo Cañaveral, EE.UU.1 2 3 4
Reingreso 31 de marzo de 1970 (+58 000 órbitas)1 2 3 4 5
Vida útil 111 días1 2 3 4
Aplicación Ciencias de la Tierra1 2 3 4
Masa 13,97 kg1 2 3 4
NSSDC ID 1 2 3 4 1958-001A1 2 3 4
Sitio web Explorer 1, NASA NSSDC Master Catalog
Elementos orbitales
Semieje mayor 7832,2 km1 2 3 4
Excentricidad 0,1398491 2 3 4
Inclinación 33,24 grados1 2 3 4
Período orbital 114,8 minutos1 2 3 4
Apoastro 2550 km (altura sobre superficie)1 2 3 4
Periastro 358 km (altura sobre superficie)1 2 3 4
Órbitas diarias 12,545

 

(03) – Astérix

País: Francia; Nombre nativo: A-1Asterix1

El satélite artificial Astérix fue el primer satélite que Francia puso en órbita el 26 de noviembre de 1965. Se utilizó, para su lanzamiento, un cohete Diamant A desde Hammaguir, Argelia, con el objetivo de probar el vehículo.1

Consistía, únicamente, en un transmisor de radio que nunca llegó a emitir a causa de una avería en la radio del vehículo, aunque tenía una vida programada de 3 años.

Con este lanzamiento, Francia pasó a ser el tercer país (cuarto país si se tiene en cuenta a Canadá, este con vector de EE.UU.) que ponía un satélite en órbita, detrás de Estados Unidos y la Unión Soviética.

Características

  • Peso: 42kg
  • Perigeo: 527km
  • Apogeo: 1697km
  • Inclinación: 34.3º
  • Período: 107.5′

Durante la carrera presidencial entre el general De Gaulle y François Mitterrand, la cuestión de convertir a Francia en una nación con capacidad de lanzamiento espacial pasó al primer plano de la actualidad, ya que el primero deseaba aumentar la credibilidad del programa misilístico nacional. Hasta entonces, sólo la URSS y los EE.UU. poseían dicha capacidad y habían colocado satélites en órbita mediante medios propios. Si Francia hacía lo mismo, demostraría la habilidad de su industria misilística y lo adecuado del dinero invertido en ella, y además se subiría al carro de la exploración del Cosmos.

Para estar seguro de que la decisión era correcta, De Gaulle creó el 7 de enero de 1959 el Comité de Recherches Spatiales, que se ocuparía de estudiar la cuestión.

Los primeros pasos hacia un satélite francés se realizaron en diciembre de 1959, cuando M. Bernard Dorléac informó sobre dicha intención a varios empleados de la SEREB (Société d’Etudes et de Réalisations des Engines Balistiques), sociedad que había recibido el encargo de desarrollar el cohete espacial. Hacia mayo de 1960, los participantes en el proyecto tenían ya un primer esbozo de cómo debía ser el cohete de tres etapas, derivado de vehículos disponibles, como el Super-Veronique. Con este vector, en teoría se podía lanzar un pequeño satélite (de 20 a 35 Kg) hacia 1963. A finales de año, se estaban proponiendo ya versiones avanzadas del cohete para satelizar cargas más pesadas.Asterix2

El 18 de diciembre de 1961, el Gobierno francés aprobaba oficialmente el proyecto de lanzar un satélite artificial. Su cohete se llamaría Diamant y éste podría lanzar, a partir de 1965, unos 100 Kg a una altitud de 360 Km. El programa científico estaría controlado por un nuevo centro, el Centre National d’Études Spatiales (CNES), conocido desde entonces como la agencia espacial francesa.

El Diamant, finalmente, usaría en sus dos primeras etapas una modificación del misil Saphir, al que se le añadiría una tercera etapa y un sistema adecuado para albergar al satélite. La idea era preparar cuatro misiones del Diamant, experimentales, que sólo albergarían a un satélite científico después de alcanzar un primer éxito de lanzamiento. El satélite experimental lo proporcionaría (pagaría) el Ejército y se llamaría “A” (Armée).

Antes del debut del Diamant (clase A), Francia se embarcó en un programa de ensayos de las etapas de propulsión del cohete. Se lanzarían cohetes Saphir y Rubis (compuesto éste por las dos últimas etapas del Diamant) durante varios meses. A bordo transportaron equipos de medida y maquetas de satélites, como el futuro D-1A (Diamant-1A), que desarrollaría el CNES. Otro satélite de este centro, el FR-1, tendría objetivos científicos y lo lanzaría la NASA un poco más adelante.

El A-1 utilizaría un muelle para ser separado de su cohete, de modo que recibió inicialmente el apodo “Zébulon”, un personaje infantil algo ridículo. Conscientes de que este nombre no era precisamente atractivo y que difícilmente la prensa utilizaría el de “A-1”, sus patrocinadores decidieron llamarlo “Astérix”, como el conocido personaje galo de las historietas.

El A-1 sería un satélite sencillo. Tenía 50 cm de diámetro, 53,6 cm de alto y una masa de 39 Kg. Sólo debía demostrar que el Diamant podía satelizar un objeto, de modo que su carga útil principal era un transmisor que permitiera seguirlo en órbita y determinar esta última. Su funcionamiento, por tanto, no debía superar las dos semanas, el tiempo necesario para agotar sus baterías. Sin misión científica, las señales del mismo transmisor podrían, a pesar de todo, ser empleadas para medidas ionosféricas. Además, el satélite llevaría un transpondedor radar para permitir calcular desde tierra si la tercera etapa había inyectado con éxito a su carga en la órbita prevista.

Se construyeron cinco prototipos del satélite, incluyendo dos para vuelos espaciales, si bien sólo uno fue enviado a la órbita terrestre. Otro fue usado para ensayos en tierra en las instalaciones de la empresa Matra, que participó como contratista principal en el programa (tanto del satélite como del cohete). La integración final del A-1 y del Diamant-A se efectuó en octubre de 1965 bajo la responsabilidad de la SEREB, en Saint-mëdard-en Jalles. Finalmente, uno y otro fueron enviados a la zona de lanzamiento, el 4 de noviembre, en Hammaguir (Centre Interarmées d’Essais d’Engins Spéciaux d’Hammaguir, Argelia).

Después de varios intentos frustrados, el A-1 despegó desde la rampa Brigitte (B-2) el 26 de noviembre de 1965, y alcanzó con éxito una órbita elíptica de 528 por 1.752 Km. Averiguar sus parámetros, sin embargo, no sería fácil. La telemetría tras el lanzamiento resultó ser de mala calidad, debido a que la separación del carenado rompió una de las antenas. El transpondedor radar, en cambio, sí permitió hacer un seguimiento del satélite.

El vehículo orbital fue seguido por una red de estaciones en tierra organizada por el CNES. El éxito del lanzamiento, en todo caso, fue casi total. Gracias a ello ya no serían necesarios más vuelos de prueba y los restantes tres cohetes Diamant-A fabricados se usarían para lanzar satélites del CNES.

(04) – Ōsumi

Ōsumi (o Ohsumi) es el nombre del primera satélite japones puesto en órbita, con el nombre de la Provincia de Ōsumi en las islas del sur de Japón. Fue lanzado el 11 de febrero, 1970 en 04:25 GMT con un Lambda 4S-5 cohetes desde Uchinoura Centro Espacial por el Instituto de Ciencias Espaciales y Aeronáuticas, Universidad de Tokio, ahora parte de la Agencia de Exploración Aeroespacial de Japón (JAXA). Japón se convirtió en el cuarto país después de la Unión Soviética, Estados Unidos y Francia para lanzar un satélite artificial en órbita con éxito por sí solo.

Osumi

Tipo de Misión Ciencia de la Tierra
Operador Instituto de Ciencias Espaciales y Aeronáuticas, Universidad de Tokio (ahora parte de JAXA)
COSPAR ID 1970-011A
Propiedades Spacecraft
Masa de lanzamiento 24.0 kilogramos (52,9 libras) [1]
Poder 10,3 vatios [1]
Inicio de la misión
Fecha de lanzamiento 11 de febrero 1970, 04:25
Rocket Lambda-4S
Lugar de lanzamiento Kagoshima LA-L
Contratista ES COMO
Fin de la misión
Último contacto 12 1970 [2]
Fecha Decay 02 de agosto 2003 [3]
Parámetros orbitales
Sistema de referencia Geocéntrico
Régimen Medio Tierra
Excentricidad 0.262379 [4]
Perigeo 350 kilómetros (220 millas)
Apogee 5.140 kilómetros (3.190 millas)
Tendencia 31.0 grados [5]
Periodo 144,0 minutos