Este Mundo, a veces insólito

Gravity Probe B

Gravity Probe B

Información general

Organización: NASA

Satélite de: Tierra

Fecha de lanzamiento: 20 de abril de 2004

Vehículo de lanzamiento: Delta

Sitio de lanzamiento: Base Vandenberg

Aplicación: Estudios gravitatorios

Masa: 3145 kg

NSSDC ID: 2004-014A

Elementos orbitales

Inclinación: 89,9 grados

Período orbital: 97,6 minutos

Apoastro: 651 kmgravitypb1

Periastro: 647,3 km

Gravity Probe B es un satélite artificial desarrollado por la NASA y la Universidad de Stanford para comprobar dos predicciones de la teoría general de la relatividad de Albert Einstein. Fue lanzado el 20 de abril de 2004 por un cohete Delta desde la base Vandenberg, obteniendo resultados exitosos que fueron presentados los primeros días de mayo de 2011.1 2

El satélite, que orbita a 650 km de altura en una órbita polar, lleva cuatro pequeños giroscopios contenidos en un vaso Dewar de 1500 litros de capacidad y enfriado con helio líquido a 1,8 Kelvin, cuyo desplazamiento será medido con una precisión sin precedentes para detectar pequeños cambios en la dirección de giro. Estos pequeños cambios serían debidos a la manera en que el espaciotiempo es distorsionado por la masa y el giro de la Tierra. Los giroscopios fueron construidos a partir de esferas de cuarzo recubiertas de niobio, que a las temperaturas del helio líquido se vuelve superconductor, permitiendo que los giroscopios puedan ser suspendidos eléctricamente. Los cambios en el eje de rotación de los giroscopios (que giran a 10.000 revoluciones por minuto) son medidos por magnetómetros ultrasensibles.

La nave se estabiliza por rotación (entre 0,1 y 1 revoluciones por minuto). Los propulsores de posición se alimentan del helio que enfría el vaso Dewar.

Resultados exitosos

En mayo de 2011 la Administración Nacional de Aeronáutica y del Espacio de Estados Unidos, NASA, informó que la misión Gravity Probe B pudo confirmar las dos predicciones clave derivadas de la teoría general de la relatividad para cuyo fin había sido diseñada la nave.3 A su vez la Universidad Stanford informó que después de treinta y un años de investigaciones, diez años de preparativos, un año y medio de vuelo y cinco años de análisis de datos; el grupo encargado del proyecto arribó a los resultados finales de la prueba que marca un hito en la teoría formulada por Albert Einstein en 1916.4

Enlaces externos

Equipo y Funcionamientogravitypb2

Para probar la teoría de la relatividad general de Einstein, el GP-B debe medir dos ángulos minúsculos con un giroscopio flotando en el espacio. Mientras que el concepto de el GP-B es relativamente simple en diseño, la tecnología requerida para construirlo es una de las más sofisticadas en el mundo. Científicos de la Universidad de Stanford, NASA y Lockheed Martin han buscado en muchas ciencias e inventado mucha de la tecnología que hace esta misión posible. De hecho, mucha de la tecnología ni siquiera existía cuando Leonard Schiff concibió este experimento a principios de 1960.

El instrumento científico del GP-B toma la forma de un bloque rectangular largo con 4 giroscopios alineados detrás del telescopio que sale por encima del satélite. Cada giroscopio está suspendido en un ambiente de cuarzo, rodeado de una estructura metálica conectada a un SQUID para monitorear su orientación. Los giroscopios sellados se encuentran en un bloque de cuarzo sellado que está unido al telescopio sellado de cuarzo. Estos tres componentes conforman el Ensamblaje de Instrumentos Científicos (SIA).

El giroscopio más perfecto del mundo

Para medir los ángulos microscópicos que Leonard Schiff predice, el GP-B necesita un giroscopio casi perfecto — uno que no se desvie más de una cien billonésima parte de un grado de la vertical por cada hora que gire. Este es un reto bastante difícil, dado que todos los giroscopios tienden a desviarse mientras giran. Aun los giroscopios más avanzados, hallados en misiles y aviones, se desvían en 7 órdenes de magnitud más que lo que el GP-B permite.gravitypb3

Qué crea un desvío en inclusive los mejores giroscopios? Tres características físicas de un giroscopio pueden hacer que su eje se desvie:

  • Un desbalanze en la masa o distribución de densidad dentro del giroscopio
  • Una superficie desigual, asimétrica en el giroscopio creando fricción con el aire
  • Fricción entre soportes del giroscopio Esto quiere decir que el giroscopio del GP-B debe ser balanceado y homogéneo por dentro, no puede tener superficies rugosas, y debe estar libre de cualquier soporte.

Luego de años de trabajo y la invención de numerosas nuevas tecnologías, este es el resultado: Una esfera homogénea de 1.5 pulgadas de cuarzo puro fundido, pulido a unas cuantas capas atómicas de perfectamente liso. Es el objeto más esférico creado, superado en esfericidad sólo por estrellas de neutrones!

Por dentro, el giroscopio es cuarzo sólido. Fue tallado de un bloque de cuarzo puro del Brasil y hecho en Alemania. Sus partes interiores son idénticas a 2 partes en un millón (eso es como tener 999998 niños idénticos de 1000000 personas).

En la superficie, el giroscopio es menos de 3 diez millonésimas de una pulgada de perfectamente esférico. Esto significa que cada punto en la superficie del giroscopio está a exactamente la misma distancia del centro con un error de 0.0000003 pulgadas.

Finalmente, el giroscopio esta libre de todo soporte, levitando en un ambiente de cuarzo. Seis electrodos espaciados idénticamente al interior del ambiente mantienen al giroscopio flotando en el centro. Una breve corriente de gas helio hace girar al giroscopio a 10000 rpm. Después de eso, el giroscopio gira en el vacÌo, apenas a 1 milímetro de sus paredes, libre de toda interferencia.

El telescopio: siguiendo la estrella guíagravitypb4

Durante la misión, se espera que el eje de rotación de cada giroscopio se mueva según la curvatura y torcedura del espacio-tiempo local. La única manera en que podemos ver este movimiento es comparando cada eje de rotación a una línea fija de referencia. En esta misión, la línea fija de referencia es la línea entre el telescopio y nuestra estrella guía, IM Pegasi. El telescopio debe permanecer fijado en el centro exacto de la estrella guía (dentro de un miliarcosegundo) a través de la misión, o el GP-B perderá su única línea de referencia crítica.

Enfocar el centro exacto de una estrella no sería tan difícil si fueran puntos fijos de luz como parecen a simple vista. Sin embargo, la IM Pegasi, como muchas estrellas, deambula con el cielo, siguiendo un patrón parecido a una espiral en vez de un trayecto lineal, y su luz difracta, o se esparce, mientras viaja a través del universo a nuestro telescopio.

NOTA: IM Pegasi — HR8703

IM Pegasi (~300 años luz) significa «de o en Pegaso (Pegasus)», que es una constelación fácilmente visible en noches de otoño en Norte América, Europa y Asia.

La estrella guía es parte de un sistema binario estelar, como 46% de las estrellas en nuestro universo. El sistema binario estelar consiste de dos estrellas orbitando una junto a la otra.

En el caso de la IM Pegasi, una estrella más pequeña órbita alrededor de la estrella mayor en tamaño, sobre la cuál el GP-B se enfoca. La estrella pequeña crea cierto movimiento en la estrella grande, ya que la ‘jala’ de lado a lado mientras órbita. Este es otro movimiento que el GP-B debe tomar en cuenta cuando se enfoca en el centro exacto de la estrella grande.

El movimiento de la estrella alrededor del cielo es monitoreado por un sofisticado sistema de radio-telescopios operando en conjunto con otros, llamado VLBI (Very Long Base Interferometer). Telescopios desde Nueva México a Australia y Alemania se enfocan en nuestra estrella guía y detalla su movimiento como si un solo disco telescópico del tamaño de la tierra estuviera enfocado en la estrella. Los movimientos de la estrella guía son comparados a un cu·sar distante. Los cuasares son masas extremadamente grandes que residen en los rincones del universo, muy lejos de la estrella guía. Por su distancia y tamaño, parecen estar excepcionalmente quietos con respecto a otras estrellas en el cielo, y proveen un punto de referencia invaluable para el VLBI.

Luz estelar difractadagravitypb5

La difracción ocurre cuando los fotones en un rayo de luz se esparcen mientras viajan por el espacio. La luz de IM Pegasi se esparce en un diámetro de 1400 miliarcosegundos. El GP-B debe encontrar el centro exacto de la estrella guía dentro de un miliarcosegundo. Científicos resolvieron este problema en dos maneras: construir un telescopio increíblemente estable que este libre de cualquier interferencia gravitacional, y mandar la luz estelar a través de un IDA (Image Divider Assembly) súper sensible dentro del telescopio.

El telescopio en sí es un bloque de 14 pulgadas (35.56 cm) de cuarzo, idéntico al cuarzo utilizado para los giroscopios. Sus espejos están exquisitamente pulidos y sus componentes estás conectados a través de un proceso llamado «adherencia molecular». En este proceso, la superficie de cada componente es pulido a tal punto que las moléculas de cada superficie se «pegan» una a otra usando la misma atracción eléctrica que ocurre a un nivel molecular.

Muchos telescopios son capaces de hallar el centro exacto de una estrella enfocándose en la luz estelar en un solo sensor. El sensor lee cuánta luz llega a cada mitad de este. El alineamiento del telescopio es ajustado hasta que cada mitad del sensor reciba exactamente la mitad de la luz estelar recibida.gravitypb6

Desafortunadamente, este método no es lo suficientemente preciso para el GP-B. Ningún sensor es lo suficientemente pequeño o sensible para dividir el pequeño monto de luz estelar que el GP-B recibe, y apuntar el telescopio dentro de un miliarcosegundo. O sea que se creó un IDA y se lo posicionó al final del telescopio. La luz estelar entra al IDA luego de haber sido enfocado por 3 espejos en el telescopio. El rayo es primeramente dividido, difractando mitad de la luz estelar, y permitiendo que la otra mitad siga su trayecto. EL rayo difractado alinea el telescopio en el eje Y. El rayo que continua alinea el telescopio en el eje X.

Cada rayo luego llega a un techo de prisma (un prisma con una punta apuntada a la luz), el cual divide la imagen en dos. Cada parte de la imagen dividida es direccionada hacia su propio sensor en el paquete detector y las lecturas eléctricas son comparadas. Cuando el telescopio está apuntado exactamente al centro de la estrella (dentro de un miliarcosegundo(, el flujo eléctrico (cantidad de señal) de cada sensor es idéntico. Si no son idénticos, el satélite mueve el telescopio para ajustar su mira, de tal forma que cuando la luz estelar llegue al techo de prisma, cada mitad del rayo difractado llegue a cada sensor.

Ambiente libre de fuerza

El instrumento científico del GP-B (4 giroscopios. en sus ambientes, en un bloque de cuarzo unido al telescopio) está diseñado para hacer medidas increíblemente precisas de la forma y comportamiento del espacio-tiempo local alrededor de la tierra. SIn embargo, este instrumento opera adecuadamente sólo si está protegido de toda fuerza externa. La menor cantidad de presión o calor, la influencia de un campo magnético, cualquier tipo de aceleración gravitacional, o la más pequeña turbulencia atmosférica destruirían la precisiÛn de este instrumento. Para que el GP-B sea exitoso, el instrumento debe estar en un ambiente casi-cero.

La sonda Gravity Probe B confirma dos predicciones de Einstein sobre el espacio-tiempo

Artículo publicado por Trent J. Perrotto el 3 de mayo de 2011 en NASA.

La misión Gravity Probe B (GP-B) de la NASA ha confirmado dos predicciones clave derivadas de la Teoría de la Relatividad General de Einstein, algo para lo que la nave fue diseñada.

El experimento, lanzado en 2004, usó cuatro giroscopios ultra-precisos para medir el teorizado efecto geodético, la curvatura del espacio y el tiempo alrededor de un cuerpo gravitatorio, y el arrastre de marcos, cuánto tira del espacio y el tiempo un objeto giratorio cuando rota.gravitypb7

GP-B determinó ambos efectos con una precisión sin precedentes apuntando a una única estrella, IM Pegasi, mientras permanecía en una órbita polar alrededor de la Tierra. Si la gravedad no afectase al espacio y el tiempo, los giroscopios de GP-B apuntarían en la misma dirección para siempre mientras estuviese en órbita. Pero en la confirmación de las teorías de Einstein, los giroscopios experimentaron unos diminutos pero medibles cambios en la dirección de su giro, mientras que la gravedad de la Tierra tiraba de ellos.

Los hallazgos están on-line en la revista Physical Review Letters.

“Imagina que la Tierra estuviese inmersa en miel. Conforme rota el planeta, la miel a su alrededor giraría, y lo mismo pasa con el espacio y el tiempo”, dice Francis Everitt, investigador principal de GP-B en la Universidad de Stanford. “GP-B confirmó dos de las predicciones más profundas del universo de Einstein, que tienen implicaciones de gran alcance para toda la investigación astrofísica. De la misma forma, las décadas de innovación tecnológica tras la misión tendrán un duradero legado en la Tierra y el espacio”.

GP-B es uno de los proyectos de más larga duración de la historia de la NASA, dado que la implicación de la agencia empezó en otoño de 1963 con un patrocinio inicial para desarrollar un experimento de giroscopio para la relatividad. Posteriores décadas de desarrollo llevaron a innovadoras tecnologías para controlar las perturbaciones ambientales en la nave, tales como el arrastre aerodinámico, campos magnéticos y variaciones termales. El buscador de estrellas de la misión y los giroscopios fueron los más precisos jamás diseñados y producidos.

GP-B completó sus operaciones de recolección de datos y se puso fuera de servicio en diciembre de 2010.

“Los resultados de la misión tendrán un impacto a largo plazo sobre el trabajo de los físicos teóricos”, dice Bill Danchi, astrofísico sénior y científico del programa en las Oficinas Centrales de la NASA en Washington. “Cada futuro reto a la Teoría de la Relatividad General de Einstein tendrá que buscar medidas más precisas que las logradas en el notable trabajo de GP-B”.

Las innovaciones que ha permitido GP-B se han usado en la tecnología GPS que permite a los aviones aterrizar sin ayuda. Adicionales tecnologías de GP-B se aplicaron en la misión Explorador del Fondo Cósmico de la NASA, que determinó con precisión la radiación de fondo del universo. Tal medida es el sustento de la Teoría del Big Bang, y otorgó el Premio Nobel al físico de NASA John Mather.gravitypb8

La idea de satélite libre de arrastre desarrollada para GP-B hizo posibles un número de satélites de observación terrestres, incluyendo el Experimento de Recuperación Gravitatoria y Clima de la NASA y el Explorador de Campo Gravitatorio y Circulación Oceánica de estado estacionario de la Agencia Espacial Europea. Estos satélites proporcionaron las medidas más precisas de la forma de la Tierra, claves para una navegación precisa en tierra y mar, y una comprensión de la relación entre la circulación oceánica y los patrones del clima.

GP-B también empujó las fronteras del conocimiento y proporcionó un entrenamiento práctico de campo para 100 estudiantes de doctorado y 15 candidatos al grado de máster en universidades de todo Estados Unidos. También trabajaron en el proyecto más de 350 estudiantes universitarios y más de cuatro docenas de estudiantes de instituto junto a científicos e ingenieros aeroespaciales líderes en la industria y el gobierno. Una estudiante universitaria que trabajó en GP-B se convirtió en la primera mujer estadounidense en el espacio, Sally Ride. Otro fue Eric Cornell que ganó el Premio Nobel de Física en 2001.

“GP-B se añade al conocimiento base de la relatividad de formas importantes y su positivo impacto se sentirá en las carreras de los estudiantes cuya educación se verá enriquecida por el proyecto”, dice Ed Weiler, administrador asociado para la Junta de la Misión Científica de las Oficinas Centrales de la NASA.

Deja un comentario

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.