EsasCosas

Este Mundo, a veces insólito

Calendario

noviembre 2024
L M X J V S D
 123
45678910
11121314151617
18192021222324
252627282930  

Secretarios generales de la ONU

La Secretaría General de Naciones Unidas es el órgano administrativo cuyo titular es la máxima representación diplomática de las Naciones Unidas. Entre sus competencias se encuentra la de convocar el Consejo de Seguridad, la Asamblea General, el Consejo Económico y Social y otros organismos de la ONU. La Carta de las Naciones Unidas declara que quienes trabajen en esta deben asegurar “el más alto grado de eficiencia, competencia e integridad” tratando que exista la más amplia representación geográfica.

El Secretario-general preside, asimismo, el Consejo Ejecutivo (United Nations System Chief Executives Board for Coordination (CEB)), que reúne bianualmente a los jefes ejecutivos de todos los fondos, programas y agencias de las Naciones Unidas.1

El secretario general es nombrado por la Asamblea General a recomendación del Consejo de Seguridad.

Relación ordenado de los Secretarios generales de la ONU

Periodo

Foto

Biografía

1945-1946

 NPG x125710; (Hubert Miles) Gladwyn Jebb, 1st Baron Gladwyn by Baron Studios Hubert Miles Gladwyn Jebb, Primer Barón de Gladwyn, más conocido como Gladwyn Jebb (25 de abril de 1900 – 24 de octubre de 1996), fue un político y diplomático británico, fundador y primer secretario general de las Naciones Unidas, cargo que desempeñó entre 1945 y 1946.

1946-1952

 Trygve Lie Trygve Lie. Nacido en 1896, en Oslo, y tras ejercer de ministro de Exteriores de su país durante la II Guerra Mundial, Lie fue elegido a los 43 años como primer secretario general de la ONU gracias a un difícil compromiso entre Estados Unidos y la URSS. Su actuación durante la primera crisis de la organización, la ocupación soviética de Irán, le valieron las críticas de muchos. Su principal logro fue organizar la respuesta internacional en el conflicto de la península coreana. Murió en 1968.

1953-1961

  Experto en finanzas, Dag Hammarskjold (Jonkoping, Suecia, 1905; murió en el Congo en 1961) ha sido quizá el secretario general más innovador y creativo de los existentes. Ideó, organizó y desplegó el primer contingente de ‘cascos azules’ en el Sinaí (UNEF), y forzó la intervención internacional en el Congo, con lo que consolidó la autoridad de la figura del secretario general. El líder soviético Nikita Krushchev intentó reemplazarlo por una troika, sin éxito. Falleció en accidente de avión en Zambia mientras realizaba una misión de paz en el Congo en septiembre de 1961. Recibió el premio Nobel de la Paz a título póstumo semanas después.

1961-1971

  Nacido en Pantanaw (Burma, hoy Myanmar) en 1909, U Thant fue el primer secretario general de un país del Tercer Mundo, lo que le dotó de sensibilidad para tratar el tema de la descolonización. Fue muy criticado por la retirada de los ‘cascos azules’ de Oriente Próximo, preludio de la guerra de los Siete Días entre israelíes y árabes. Y el primer fracaso grave de la organización en su objetivo de mantener la paz internacional. Tampoco pudo o supo participar positivamente en la Crisis de los Misiles de Cuba. Durante su mandato ocurrió el periodo culminante de la guerra de Vietnam. Murió de cáncer en Nueva York en 1974.

1972-1981

  Ex ministro de Exteriores, el austríaco Kurt Waldheim (Sankt Andra-Wodern, 1918) puso en práctica numerosas iniciativas de mediación en conflictos como los de Chipre en India-Pakistán. Sus críticas a los bombardeos de Washington a Vietnam del Norte le acarrearon la denuncia pública del entonces presidente estadounidense, Richard Nixon. Durante su mandato los países del Tercer Mundo aumentaron su influencia sobre todo en la Asamblea General. Las revelaciones de su colaboración con los nazis durante la II Guerra Mundial desdibujaron sus logros. Waldheim y su esposa fueron declarados en diferentes países como persona no grata. En 1987, fueron puestos en una lista de observación para impedir su ingreso a los Estados Unidos. En sus 6 años de gobierno, Waldheim no realizó muchas visitas a países extranjeros, salvo a la Ciudad del Vaticano y a los países de Oriente Medio. Murió el 14 de junio de 2007.

1982-1991

  El peruano Javier Pérez de Cuéllar (Lima, 1920) es el único latinoamericano que ha desempeñado este cargo y durante su mandato la ONU logró la resolución de difíciles crisis como la ocupación de Afganistán, y las guerras entre Irán e Irak y en El Salvador. Además, logró con éxito las transiciones democráticas en Namibia y Nicaragua. No pudo, sin embargo, mediar con éxito en la guerra de las Malvinas entre Argentina y Reino Unido. En octubre de 1987 recibió el premio Príncipe de Asturias (España) por su promoción de la cooperación Iberoamericana y, posteriormente, el premio Olof Palme (Suecia).

1992-1996

  Butros Butros Gali. Diplomático, jurista y académico de prestigio, el egipcio Gali (El Cairo, 1922-2016) asumió la secretaría general en un momento especialmente delicado al finalizar la Guerra Fría. Propugnó una visión ambiciosa y radical en su documento ‘Agenda para la Paz’ que concebía una ONU fuerte y capaz de intervenir para mantener la paz internacional. Tuvo enormes dificultades para ponerlas en práctica en difíciles conflictos como los de Bosnia y Somalia. Su independencia de criterio le produjo la oposición de la Administración del entonces presidente estadounidense, Bill Clinton, que vetó su reelección.

1997-2006

  Kofi Annan. El único funcionario de la ONU que ha logrado ascender al máximo puesto de la institución, el ghanés Annan (Kumasi (Ghana), 1938 – Berna (Suiza), 2018) ha buscado reformar la ONU para hacerla más flexible y eficiente. Propuso una revisión crítica de los errores de la ONU en conflictos como los de Ruanda y Bosnia, y ha propiciado una agenda más social que incluye, la lucha contra la pobreza, el sida y la desigualdad tecnológica entre los países ricos y los menos desarrollados. Su gran asignatura pendiente es la reforma del Consejo de Seguridad. Ha enviado emisarios a los conflictos de Africa, el último y que ha creado una crisis humanitaria grave el de Darfur en Sudán. Su hijo se vio involucrado en el escándalo del Programa ‘Petróleo por alimentos’, puesto en marcha en Irak lo que ensombreció la imagen de buen gestor que se había labrado.

2006-2016

  Ban Ki-Moon (Eumseong, Chungcheong del Norte, 13 de junio de 1944) es un diplomático surcoreano quien actualmente ejerce como el octavo Secretario General de las Naciones Unidas, habiendo sucedido a Kofi Annan el 1 de enero de 2007. El año de su graduación universitaria, se unió al Ministerio de Asuntos Exteriores de Corea del Sur y recibió su primer puesto en Nueva Delhi, India. Durante su carrera en el Ministerio, obtuvo una reputación de modestia y competencia. El 13 de octubre de 2006 fue elegido Secretario General de las Naciones Unidas por aclamación, puesto que comenzó a ejercer el 1 de enero del 2007. El 21 de junio de 2011 fue reelegido para el cargo en el período comprendido entre el 1 de enero de 2012 y el 31 de diciembre de 2016, por aclamación de la asamblea general órgano supremo de la ONU. Desde su elección, ha dirigido múltiples esfuerzos para reformar la organización en áreas como las Fuerzas de paz de las Naciones Unidas y las prácticas laborales dentro del organismo. En el campo diplomático, se ha enfocado en conflictos como el de Darfur, en el cual ayudó a convencer al presidente de Sudán, Omar Hasan Ahmad al-Bashir, para que permitiera la intervención de las Fuerzas de paz en ese país. Además, presionó continuamente al ex presidente de los Estados Unidos George W. Bush para que éste tomara acción con respecto al calentamiento global.

2017

António Manuel de Oliveira Guterres (Lisboa, 30 de abril de 1949) es un ingeniero, profesor y político portugués, ex primer ministro de Portugal, expresidente de la Internacional Socialista y ex alto comisario de las Naciones Unidas para los Refugiados. António Guterres nació en Lisboa, el 30 de abril de 1949. Hijo de Virgílio Dias Guterres (nacido en Lisboa, São José, el 21 de octubre de 1913) y de Ilda Cândida dos Reis Oliveira. Cursó ingeniería física y electrónica en el Instituto Superior Técnico.En 1992, fue elegido presidente del Partido Socialista y líder de la oposición contra el gobierno de Aníbal Cavaco Silva. Fue también nombrado vicepresidente de la Internacional Socialista en septiembre de ese mismo año. Desde 1999 y hasta 2005 fue presidente de esta organización. Tras la victoria del Partido Socialista en las elecciones de 1995 Guterres fue invitado a formar gobierno.1 Fue reelegido en 1999 y desde enero hasta julio del 2000, ocupó la Presidencia del Consejo Europeo. A finales del 2001, tras el resultado desastroso del Partido Socialista en las elecciones locales Guterres renunció y terminó su gobierno. Las elecciones de 2002 las ganó el Partido Social Demócrata de José Manuel Durão Barroso, expresidente de la Comisión Europea. António Manuel de Oliveira Guterres fue nombrado Alto Comisario de las Naciones Unidas para los Refugiados (ACNUR) el 15 de junio de 2005, cargo en el que se desempeñó hasta el 15 de diciembre de 2015.1 También recibió la Orden Militar de Cristo en 2002. Secretario general de la ONU a partir del 1 de enero de 2017 por un período de 5 años.

 

Guardar

Guardar

Guardar

Guardar

Árbol Bodhi budista

El “AZVHATA”, árbol sagrado en la India, símbolo del conocimiento y del Ser Supremo y que luego se convertiría en al árbol “BO” de los antiguos budistas.

Si nos remontamos al lejano oriente, en la leyenda de Buda, cuando se coloca en el Punto Inmóvil bajo el Árbol de la Iluminación, el Creador de la Ilusión del Mundo, Karma-Mara (Deseo de la Vida y Temor a la Muerte), se acercó para amenazar su posición. Pero Buda tocó la tierra con los dedos de su mano derecha y entonces “la poderosa tierra atronó con cien, mil, cien miles rugidos diciendo: ¡te pongo por testigo! Y el demonio huyó” (Jataka). Entonces, alcanzó al Iluminación esa noche y permaneció absorto en éxtasis durante siete veces siete días en el transcurso de los cuales se levantó una terrible tempestad y un poderoso rey serpiente llamado Muchalinda, saliendo de su morada debajo de la tierra, envolvió con sus anillos el cuerpo del Buda siete veces y dijo “que ni el frío ni el calor, ni los mosquitos, ni las moscas, ni el viento, ni el sol, ni las criaturas que se arrastran se acerquen al Bendito” (Maha-vagga) Y cuando todo acabó, Muchalinda se desenroscó y tomando forma humana, puso sus manos en la frente y veneró al Buda.ArbolBodhi1

En la tradición y la leyenda de Buda, la idea de liberación de la muerte recibió una interpretación psicológica nueva, que si embargo, no cambia el espíritu de la representación mítica anterior. Los viejos temas se elevan a un plano superior y se les da una nueva inmediatez a través de su asociación con un personaje histórico verdadero, que había ilustrado su significación a través de su vida. Así, en esta leyenda, en el árbol cósmico, predomina una atmósfera de acuerdo sustancial en donde la diosa y su esposo la serpiente ayudan a su benemérito hijo en la búsqueda de la liberación respecto de las limitaciones innatas, la enfermedad, la vejez y la muerte.

Para los Budistas el BO ó Bodhi es un árbol sagrado ya que Gautama Buddha meditaba sentado bajo sus ramas cuando descubrió el nirvana, y el árbol Bayan es adorado por los Hindúes que creen que Bahma se transformó en él, como un árbol cósmico, igual que el Boddhi, bajo el cual Buda alcanzó la plena iluminación, por lo que desde entonces representa al mismo Buda en la iconografía primitiva.

Escala de Beaufort

Desde el año 1805, la velocidad del viento, y por consiguiente su fuerza, la determinaban los marinos por la llamada escala de Beaufort, ideada por ese almirante inglés, el cual estableció 12 grados de fuerza del viento, basados en las maniobras que, según el viento que soplaba, habían de hacerse en el aparejo de los navíos a vela. Actualmente, en el mar, se caracterizan los grados por la altura de las olas, y en tierra, por los efectos en los árboles, edificios, etc.

Actualmente, la escala anemométrica de Beaufort ha quedado establecida como sigue:

Grado Denominación Velocidad en Efectos Especiales Altura de olas en metros
Nudos M/seg Km/h Millas T /h En tierra firme En el mar
0 Calma 0-1 0-0,2 0-1 0-1 El humo sube verticalmente Como un espejo, totalmente en calma 0.0
1 Ventolina 1-3 0,3-1,5 1-5 1-3 El humo se inclina Rizos sin espuma. Olas pequeñas en forma de escamas 0,1
2 Flojito(brisa ligera) 4-6 1,6-3,3 6-11 4-7 Mueve hojas de árboles y banderas. El viento se siente en la cara. Los gallardetes comienzan a ondear Olitas: crestas cristalinas sin espuma 0,2
3 Flojo (brisa débil) 7-10 3,4-5,4 12-19 8-12 Agita hojas y ramas de árboles en constante movimiento. Los gallardetes ondean plenamente Olitas: crestas rompientes produciendo una espuma translúcida 0,6
4 Bonancible (brisa moderada) 11-16 5,5-7,9 20-28 13-18 Mueve las ramas. Polvareda. Se elevan los papeles ligeros. Ondean las banderas. Olitas creciendo: las crestas presentan crespones de espuma. Cabrilleo. 1
5 Fresquito (brisa fresca) 17-21 8.0-10,7 29-38 19-24 Mueve arbolitos. Se forman ondas en lagos y estanques. Levanta bastante polvo. Olas medianas y de gran longitud: se generalizan los crespones de espuma 2
6 Fresco (brisa fuerte) 22-27 10,8-13,8 39-49 25-31 Mueve ramas grandes y es muy difícil llevar abierto el paraguas. Silbar del viento en tendidos de líneas eléctricas Olas grandes: frecuentes salpicaduras dejando gran cantidad de espuma. Se produce algo de rocío. 3
7 Frescachón (viento fuerte) 28-33 13,9-17,1 50-61 32-38 Mueve árboles y es difícil cambiar contra el viento. Las banderas son arrancadas. Aparecen los primeros daños en tendidos de líneas eléctricas Mar creciente: la espuma blanca, que proviene de las crestas, empieza a ser arrastrada en la dirección del viento formando nubecillas 4
8 Duro (viento tormentoso) (temporal) 34-40 17,2-20,7 62-74 39-46 Desgaja ramas y apenas se puede caminar al descubierto. Caídas de anuncios mal soportados Olas alargadas: torbellinos de salpicaduras. La espuma forma líneas en dirección del viento 5,5
9 Muy duro (tormenta) (temporal fuerte) 41-47 20,8-24,4 75-88 47-54 Derriba chimeneas y arranca tejas y cubiertas. Ruptura de ramas gruesas de árboles. Causa ligeros desperfectos Olas grandes: crestas rompen en rollos con gran estruendo. La superficie comienza a llenarse de espuma. El rocío comienza a dificultar la visibilidad. 7
10 Temporal (tormenta intensa) (temporal duro) 48-55 24,5-28,4 89-102 55-63 Desgarra ramas de árboles frondosos. Daños considerables en construcciones. Imposibilidad de mantenerse en pie y al descubierto. Olas muy grandes: crestas en penacho; poca visibilidad debido al rocío. El mar presenta un color blanco debido a la espuma. 9
11 Borrasca (tormenta huracanada) (temporal muy duro) 56-64 28,5-32,6 103-117 64-72 Comienzan a ser arrastrados objetos pesados. Grandes destrozos en general Olas altísimas. Gran estruendo de las olas al romper. Todo el mar espumoso. Disminución fuerte de la visibilidad. 11,5
12 Huracán >64 >32,7 >118 >73 Arranca árboles de cuajo y destruye construcciones de adobe y madera. Arrastra vehículos, daños graves y generalizados. Aire lleno de espuma y rociones. La mar está completamente blanca, debido a los bancos de espuma. La visibilidad es muy reducida. 14

Capas de la Tierra y de su atmósfera

Se ha procurado una clasificación lo más completa posible, pero aceptada.

Nombre Nombre Capas Km. Propiedades
Espacio exterior Espacio exterior Espacio exterior
Atmósfera Exosfera Exosfera 600 a 9.600 km. Sirve de punto de división con el espacio exterior. Se compone principalmente de hidrógeno y helio. La atmósfera no se comporta como un fluido. En esta capa la temperatura no varía y el aire pierde sus cualidades físico–químicas. En la exosfera también se encuentran los satélites artificiales.
Termopausa 500 a 600 km. Es la capa más distante de la superficie terrestre. En esta capa se encuentra mucho polvo cósmico en la zona de transito entre la atmósfera terrestre y el espacio interplanetario y en ella se suelen situar satélites meteorológicos.
Termosfera Termosfera 85 a 600 km. La temperatura de esta capa es muy elevada que a unos 300 kilómetros de altura puede alcanzar los 900º centígrados. Está formada por gases raros y los valores de calor pueden alcanzar los miles de grados.
Termosfera o Ionosfera 100 a 300 km. Llaman ionosfera sólo a la capa de 100 a 300 km. Dentro de esta capa, la radiación ultravioleta, pero sobre todo los rayos gamma y rayos X provenientes del Sol, provocan la ionización de átomos de sodio y moléculas. Es la parte de la atmósfera terrestre ionizada permanentemente debido a la fotoionización que provoca la radiación solar. Esta capa contribuye esencialmente en la reflexión de las ondas de radio emitidas desde la superficie terrestre,
Mesopausa 90 km. La mesopausa es la región de la atmósfera que determina el límite entre una atmósfera con masa molecular constante de otra donde predomina la difusión molecular, es la región donde existe la temperatura más baja en la atmósfera, cerca de -80 ºC. En la mesopausa tienen lugar las reacciones de quimioluminiscencia y aeroluminiscencia.
Mesosfera Mesosfera 50 a 85 km. La temperatura va disminuyendo con la altitud, así que se le considera la región más fría de la atmósfera (alrededor de -90 grados Celsius). También en esta capa se observan las estrellas fugaces que son meteoroides que se han desintegrado en la termosfera.
Estratopausa 22 km. La estratopausa es la capa de transición que está situada entre la mesosfera y estratosfera. La mayor parte del ozono de la atmósfera se sitúa en torno a 22 kilómetros por encima de la superficie de la Tierra, en la región próxima a la estratopausa, en la parte superior de la estratosfera.
Ozonosfera 10 a 50 km. Estrato donde se concentra el ozono atmosférico, de espesor variable y situado entre 10 y 50 km de altura, que es de gran importancia biológica porque atenúa los efectos de la radiación ultravioleta.
Estratosfera Estratosfera 12 a 50 km. Mientras mayor es la altitud en este nivel, mayor es también la temperatura, al contrario de lo que ocurre en las capas superior e inferior. La estratósfera es una región en donde se producen diferentes procesos radiactivos, dinámicos y químicos. La estratosfera tiene como límite superior la estratopausa, donde está el punto de inflexión de la temperatura, su temperatura se mantiene en torno a 0° C.
Tropopausa La tropopausa es la zona de transición entre la troposfera y la estratosfera. Marca el límite superior de la troposfera, sobre la cual la temperatura se mantiene constante antes de comenzar nuevamente aumentar sobre los 20 km snm. Esta situación térmica evita la convección del aire y confina de esta manera el clima a la troposfera.
Troposfera Troposfera 0 a 13 km. Tiene alrededor de 15 km. de espesor en el ecuador terrestre, y en ella ocurren todos los fenómenos meteorológicos que influyen en los seres vivos, como los vientos, la lluvia y las nieves. Además, concentra la mayor parte del oxígeno y del vapor de agua. En particular este último actúa como un regulador térmico del planeta. Es de vital importancia para los seres vivos. La tropósfera es una de las capas más finas del conjunto de las capas de la atmósfera. La temperatura en la troposfera desciende a razón de aproximadamente 6,5 ºC por kilómetro de altura.
Geosfera La Geosfera es la parte del planeta Tierra formada por material rocoso (sólido o fluido), sin tener en cuenta la hidrósfera ni la atmósfera.
Hidrosfera Es el sistema material constituido por el agua que se encuentra bajo y sobre la superficie de la Tierra. La hidrosfera incluye los océanos, mares, ríos, lagos, agua subterránea, el hielo y la nieve
Corteza o Litosfera Sial Sial es un término, ya obsoleto, que designa a las rocas que forman la parte fundamental de la corteza continental, situadas sobre rocas más oscuras y densas que afloran además en el fondo oceánico y que forman el sima. La litosfera, que constituye una extensión de la noción de corteza terrestre, tiene un grosor medio de 100 km de espesor bajo los océanos y alrededor de entre 150 y 250 kilómetros bajo los continentes y cratones más antiguos. La litosfera o litósfera (del griego λίθος, litos, ‘piedra’ y σφαίρα, sphaíra, ‘esfera’) es la capa superficial de la Tierra sólida, caracterizada por su rigidez. Está formada por la corteza terrestre y por la del Manto Superior, la más externa, del manto residual, y «flota» sobre la astenosfera, una capa «blanda» que forma parte del manto superior.2 Es la zona donde se produce, en interacción con la astenosfera, la tectónica de placas. Sial (sílice y aluminio), es la corteza continental sobre la cual vive el hombre y realiza sus actividades. La roca que más abunda es el granito.
Discontinuidad de Conrad 9-15 km bajo los continentes. Ubicada entre la Corteza Sial y la Corteza Sima. Es la más cercana a la superficie terrestre. Sólo existe en las áreas continentales.
Sima Es un término obsoleto, propuesto por Eduard Suess y sugerido inicialmente por Georg Johann Pfeffer, que designa al conjunto de rocas oscuras y densas (basaltos) que forman el fondo oceánico y el manto terrestre, cubiertas en los continentes por bloques de sial. Su nombre hace referencia a su composición: «silicatos magnésicos». Situado bajo el Sial.
Discontinuidad de Mohorivicic (Moho) se encuentra a unos 8-10 km. bajo los océanos, y a unos 30-40 km. bajo los continentes La discontinuidad de Mohorovicic, a veces llamada simplemente “moho“, es una zona de transición entre la corteza y el manto terrestre. Se sitúa a una profundidad media de unos 35 km, pudiendo encontrarse a 70 km de profundidad bajo los continentes o a tan solo 10 km bajo los océanos.
Manto o Astenosfera Manto superior 70 a 400 km. La astenosfera o astenósfera del griego ἀσθενός, ‘sin fuerza’ + σφαῖρα, ‘esfera’, es la zona superior del manto terrestre que está inmediatamente debajo de la litosfera, aproximadamente entre 250 y 660 kilómetros de profundidad. La astenosfera está compuesta por materiales silicatados dúctiles, en estado sólido y semifundidos parcial o totalmente (según su profundidad y/o proximidad a bolsas de magma), que permiten la deriva continental y la isostasia.
Discontinuidad de Repetty se encuentra a unos 700 km de profundidad. Discontinuidad de Repetty, entre la Astenosfera y la Pirosfera.
Pirosfera Pirosfera, considerada el fondo de los volcanes.
Manto medio 400 a 1.000 km.
Manto inferior 1.000 a 2.900 km. Mesosfera
Discontinuidad de Gutenberg situada a unos 2.900 km. de profundidad. La discontinuidad de Gutenberg es la división entre manto y núcleo de la Tierra, situada a unos 2.900 km de profundidad. Se caracteriza porque las ondas sísmicas S no pueden atravesarla y porque las ondas sísmicas P disminuyen bruscamente de velocidad, de 13 a 8 km/s. Bajo este límite es donde se generan corrientes electromagnéticas que dan origen al campo magnético terrestre, gracias a la acción convectiva del roce entre el núcleo externo, formado por materiales ferromagnéticos y el manto.
Núcleo Núcleo externo 2.900 a 4.980 km. Es una capa líquida compuesta por hierro y níquel situada entre el manto y el núcleo interno.
Discontinuidad de Wiechert o Lehmann a unos 5.100 km de profundidad. La discontinuidad de Wiechert-Lehmann-jeffrys mejor conocido como discontinuidad de Lehmann es el límite entre el núcleo externo, fluido, y el núcleo interno, sólido, de la Tierra. Fue descubierto en 1936 por la sismóloga danesa Inge Lehmann.
Núcleo interno 5.100 a 6371 km. El núcleo interno es una esfera sólida de 1.216 km de radio situada en el centro de la Tierra. Está compuesto por una aleación de hierro y níquel.

Auroras Boreales

La aurora es un fenómeno luminoso, que aparece en las latitudes altas del planeta, y raramente se observa en latitudes medias, aunque han llegado a verse hasta en Francia.

El término aurora, comprende a dos tipos de auroras clasificadas por localización geográfica:

Aurora Boreal en el hemisferio Norte (aurora borealis)

Aurora Austral en el hemisferio Sur (aurora australis)

La aurora boreal o borealis también ha sido denominada en la literatura como «Las Luces del Norte».

La aurora del hemisferio norte fue nombrada aurora boreal (luces del norte) por el científico francés Pierre Gassendi en 1621, quien fue el primero en hacer observaciones aurorales sistemáticas. La aurora del sur fue nombrada aurora austral (luces del sur) por el capitán James Cook en 1773, cuando la observó por primera vez en el Océano Índico. Ya los filósofos griegos consideraban a la aurora del norte como un fenómeno natural, y la asociaban con el reflejo de la luz en los hielos polares.

La explicación científica nos dice que la aurora boreal es el nombre que se le da al juego de luces celestes provocadas por un fenómeno electromagnético que tiene lugar al chocar las partículas eléctricas procedentes del sol con el campo magnético de la tierra. El sol desprende partículas cargadas de mucha energía, iones, protones y electrones, los cuales viajan por el espacio a velocidades entre 320 y 704 kilómetros por segundo, es decir, necesitan tan solo entre 130 y 60 horas en llegar a la Tierra. Al conjunto de partículas que vienen del Sol se les conoce como viento solar. Cuando estas partículas interactúan con los bordes del campo magnético terrestre (ionosfera) y chocan con los gases en la ionosfera, empiezan a brillar, produciendo el espectáculo que conocemos como aurora boreal y austral. La variedad de colores, rojo, verde, azul y violeta que aparecen en el cielo se deben a los diferentes gases que componen la ionosfera.

La Aurora Boreal está en constante cambio debido a la variación de la interacción entre las ráfagas de viento solar y el campo magnético de la tierra. El viento solar genera normalmente más de 100.000 megavatios de electricidad (la producción de una central nuclear convencional es de 1000 MW diarios) produciendo una aurora, lo que puede causar interferencias con las líneas eléctricas, emisiones radiofónicas o televisivas y comunicaciones por satélite.

Las auroras no es un fenómeno exclusivo de la Tierra, puede darse en cualquier planeta que tenga un campo magnético, Son de relevancia y han sido confirmadas en Júpiter, Saturno, y se sabe, que podrían darse en Urano, Neptuno y Mercurio.

El campo magnético de Júpiter es de un orden 10 veces superior al de la Tierra. Siendo su cola tan larga que llega hasta la órbita de Saturno.

Vamos a ver que es un cinturón de Van Allen

  • Los cinturones de radiación de Van Allen son áreas de la alta atmósfera que rodean la Tierra (y análogamente otros planetas como Júpiter y Saturno) por encima de la ionosfera, a una altura de 3.000 y de 000 km. respectivamente. Se sitúan sobre la zona ecuatorial y la más externa se prolongan prácticamente hasta la magnetopausa, límite entre el espacio terrestre y el espacio interplanetario. Su delimitación no está aún completamente confirmada, ya que la actividad solar y el magnetismo generan oscilaciones en sus límites, que actualmente se denominan zonas de radiación.
  • El origen se debe a un fenómeno que se produce cuando las partículas atómicas (en su mayor parte protones y electrones) emitidas desde la corona solar, o viento solar son arrastradas con un trayecto helicoidal alrededor de las líneas de fuerza del campo magnético terrestre, entre los polos norte y sur. La mayor parte de las partículas de alta energía (protones) se encuentran en el cinturón interior, mientras que los electrones suelen concentrarse en el externo.
  • La intensidad de radiación presente en los cinturones de Van Allen produce un elevado deterioro de los circuitos electrónicos y paneles solares de las naves espaciales, mientras que el efecto de una exposición sobre los seres vivos resulta extremadamente dañino. Por esta, razón las misiones espaciales requieren tanto de una protección eficaz ante el poder penetrativo que representa el bombardeo de partículas subatómicas, como de una perfecta planificación en la que se reduce al mínimo la exposición de los astronautas frente a dichas radiaciones.

Árbol Asherah asirio

Árbol de la vida asirio, “Asherah”, esta palabra es la traducida en la Biblia en el sentido de la arboleda, y se haya 30 veces. “Asherah era un árbol sagrado, símbolo del principio reproductivo de la naturaleza, característica muy prominente en los cultos a la fertilidad en el Oriente.

Se le denomina ídolo y “Amachah”, abuela de Asa, rey de Jerusalén, por causa de haber labrado para si misma un ídolo tal que era un  linghan, por espacio de siglos este fue un escrito religioso de Judea, pero el “Asherah” original era una columna con 7 ramas, en cada lado rematada en una flor globular con 3 rayos salientes y no una piedra fálica como hicieron de ellos los judíos, sino un símbolo metafísico y misericordioso que resucita a los muertos a la vida.asiria

El misericordioso, no era el Dios personal de los judíos que de su cautiverio llevaron a la arboleda, ni ningún dios extra cósmico, sino la tríada superior del hombre que es simbolizada por la flor globular de sus 3 rayos.asherad

Ashera era la principal divinidad femenina  Canaanita esposa de ÉL (primer Diós Cananeo, padre de los Dioses y de los hombres que representaba la omnipotencia ), aunque también era representada como la Diosa Athirat (Señora del mar ) o como Astarté (Es el complemento de Inanna en la mitología sumeria , de Ishtar en los mitos babilónicos  y asirios ).El nombre de Astarté suele encontrarse en los primeros libros del Antiguo Testamento.

Según el Antiguo Testamento, los Canaanitas, adoradores de la Diosa madre Asherah (Asherah puede ser traducido como bosque, arboleda, árbol) y su consorte Baal, celebraban su culto en cimas de montañas y colinas, donde se disponían altares a Baal y columnas talladas que representan a Asherah. Cuando los israelitas quisieron imponer el culto monoteísta a Yahvé, debieron destruir todos los lugares donde las naciones a las cuales deben desposeer sirvan a sus dioses, sobre las altas montañas y sobre las colinas y bajo cualquier árbol verde; deberán destruir sus altares y partir en pedazos sus pilares y prender fuego a sus Asherim. (Deuteronomio 12:2)

A Asherah se la menciona en la Bíblia en:

– Levítico (18-21)”No darás hijo tuyo para ser ofrendado a Moloc, no profanarás  el nombre de tu Diós”.

-1 Reyes (11-5)”Y se fue Salomón tras de Astarté, Diosa de los sidonios y tras de Milcom, abominación de los amonitas”.

-2 Paralipómenos (28-3)”Ajaz rey de Judah hizo imágenes de Baal y quemó perfumes en valle de los hijos de Hinnón y pasó a sus hijos por el fuego, según las abominaciones de las gentes que Yavhé había arrojado ante los hijos de Israel”.

Asherah era adorada en forma de un árbol con muchos pechos femeninos tallados en el tronco, y estos árboles constituían el centro de un bosque donde el culto se llevaba a cabo. Se podía invocar o aplacar a la diosa para adquirir fertilidad para sí mismo, la tribu o el clan.

Índice de explosividad volcánica

esplovolca

 

Los diferentes grados del índice, graficados en relación al material expulsado (en km³).

El Índice de Explosividad Volcánica o IEV (originalmente en inglés, Volcanic Explosivity Index, VEI) es una escala de 8 grados con la que los vulcanólogos miden la magnitud de una erupción volcánica. El índice es el producto de la combinación de varios factores mensurables y/o apreciables de la actividad volcánica. Por ejemplo, se considera el volumen total de los productos expulsados por el volcán (lava, piroclastos, ceniza volcánica), altura alcanzada por la nube eruptiva, duración de erupción, inyección troposférica y estratosférica de productos expulsados, y algunos otros factores sintomáticos del nivel de explosividad.

Los científicos indican la magnitud de las erupciones volcánicas con el IEV. Registra la cantidad de material volcánico expulsada, la altitud que alcanza la erupción, y cuánto tiempo dura. La escala va de 0 a 8. Un aumento de 1 indica una erupción 10 veces más potente.

Nota: Hay una discontinuidad en la definición del IEV entre los índices 1 y 2. El borde inferior del volumen de material expulsado salta por un factor de 100 entre 10.000 a 1.000.000 de metros cúbicos, mientras que el factor es de 10 entre todos los índices más altos. Para que una erupción sea considera de cierto nivel, se han de cumplir todas las condiciones: Es necesario que alcance la altitud indicada, superando el mínimo de material para ese indice. Ej. Para ser considerada de nivel 6, en una erupción se han de emitir más de 10 km3 de material volcánico a mas de 25 Km de altura.

Los valores asignados por el IEV corresponden a los siguientes grados de erupción de un volcán:

IEV Clasificación Descripción Altura
columna eruptiva
Volumen
material arrojado
Periodicidad Ejemplo Total erupciones
históricas
0 Erupción hawaiana no-explosiva < 100 m > 1000 m³ diaria Kīlauea
1 Erupción stromboliana ligera 100-1000 m > 10,000 m³ diaria Stromboli
2 Erupción
vulcaniana/
stromboliana
explosiva 1-5 km > 1.000.000 m³ semanal Galeras, 1993 3477
3 Erupción Vulcaniana
(sub-pliniana)
violenta 5-15 km > 10.000.000 m³ anual Nevado del Ruiz, 1985 868
4 Vulcaniana (sub-pliniana)/
pliniana
cataclísmica 10-25 km > 0,1 km³ cada 10 años Galunggung, 1982 278
5 Pliniana paroxística > 25 km > 1 km³ cada 100 años St. Helens, 1980 84
6 Pliniana/
Ultra-Pliniana (krakatoana)
colosal > 25 km > 10 km³ cada 100 años Krakatoa, 1883
Santa María,1902
39
7 Ultra-Pliniana
(krakatoana)
super-colosal > 25 km > 100 km³ cada 1.000 años Tambora, 1815
Maipo, 500.000 a. C.
4
8 Ultra-Pliniana (krakatoana) mega-colosal > 25 km > 1000 km³ cada 10.000 años Toba, 69.000 a. C. 1

El conteo de erupciones históricas está actualizado hasta 1994 de acuerdo al Global Volcanism Program del Instituto Smithsoniano