Este Mundo, a veces insólito

Panthalassa

Panthalassa o Paleopacífico

El océano rodeando Pangea es Panthalassa.

Panthalassa (del griego para «todos los mares») fue el enorme océano global que rodeaba al supercontinente Pangea durante el final del periodo Paleozoico y el principio de la era Mesozoica. Pangea fue el supercontinente del que se desprendieron luego los continentes actuales, en el contexto de la teoría de la deriva continental, del geofísico y astrónomo Alfred Wegener.

La ruptura de Pangea formó las cuencas del océano Atlántico y del océano Ártico y provocó el cierre de la cuenca de Tetis, creándose la cuenca del océano Índico. Este término se deriva del griego cuyo significado es “todos los mares”, nombre que se ha convenido en dar al enorme océano que rodeó Pangea al final del Paleozoico y principios del Mesozoico hace aproximadamente de 300 millones de años, cuando se formó Pangea, a 200 millones de años, cuando el supercontinente comenzó a separase en otros menores con la consiguiente formación de nuevos mares. Cabe decir que Pangea no fue el único supercontinente, sino el último hasta la fecha. Los anteriores fueron Rodinia, fragmentado hace 750 millones de años, y Pannotia, fragmentado hace 540 millones de años. Pannotia tenía forma de “V”, en el centro de la cual y a su alrededor quedó Panthalassa.

Durante los periodos arriba mencionados ocurrieron acontecimientos relevantes, como la denominada «explosión» de la vida marina del Cámbrico con su correspondiente extinción masiva, proliferación de invertebrados durante el Ordovícico, aparición de las primeras plantas terrestres en el Silúrico y de reptiles e insectos durante el carbonífero; el Paleozoico termina en el periodo Pérmico con la formación de Pangea y la extinción masiva del 95% de las especies existentes.

Antes de esto transcurrió el supereón Precámbrico. A pesar de su larga duración (desde hace 4.600 hasta 540 millones de años) no se tienen apenas evidencias fósiles de vida, probablemente porque la mayoría de las formas tuvieron cuerpos blandos que no podían fosilizar o porque quedaran atrapadas en rocas primigenias que posteriormente sufrieron erosión o metamorfismo y los posibles restos quedaron destruidos. En cualquier caso, la Panthalassa del Precámbrico fue el caldo primigenio donde se originó la vida. Los estudios científicos más aceptados sostienen la formación de vida en un tiempo en que la atmósfera de nuestro planeta era reductora (pobre en oxígeno) y cálida y la composición de los mares muy diferente de la actual (véanse los estudios de Oparin y Haldane). Otros, sin embargo, proponen que era necesaria la congelación y el impacto de meteoros (Stanley Miller). En resumen, aparte de algunos hechos probados (creación de aminoácidos en condiciones prebióticas, experimento de Urey-Miller en 1953), no existe un único modelo y no se tiene muy claro cómo apareció la vida en la Tierra, pero se presume que el océano, fuera cual fuera su composición, desempeñó un importante papel; no en vano las más antiguas muestras fósiles son de organismos marinos.

https://www.geolsoc.org.uk/Geoscientist/Archive/March-2010/Panthalassa-ocean-of-ignorance

Los orígenes de los planteamientos de la Teoría de la Deriva Continental provienen de la forma como todos los continentes parecen encajar entre sí, especialmente aquellos separados por el Océano Atlántico. Por otro lado, también existen diversas similitudes entre las faunas fósiles de distintas regiones del mundo, así como en sus formaciones geológicas. Si bien hoy en día todos los océanos poseen puntos de encuentro, es muy posible que en el pasado todos hayan sido parte de un ente unificado.

Hay hipótesis que han llevado incluso más lejos la Teoría de la Deriva Continental de Wegener y afirman que antes de la Pangea existió un supercontinente aún más compacto denominado Rodinia. Asimismo, también han nombrado un antecesor al gran océano Pantalasa, dándole el nombre de Mirovia. Este habría pasado buena parte de su existencia congelado, incluso hasta los dos kilómetros de profundidad, debido a lo que se conoce como el Periodo Criogénico, donde el planeta sufrió un período de glaciación.

A partir de la separación de la Pangea, el gran océano se dividió inicialmente en dos: El Pacífico, al oeste y al norte, y el Tetis, al sur y al este. En ese entonces surgieron dos continentes: Laurasia, al norte, y Gondwana, al sur. Pasarían millones de años para llegar a la variada formación continental y oceánica actual.

En un principio Wegener no supo explicar por qué ocurrían estos movimientos, por ello años más tarde desarrollaría la célebre Teoría de la Tectónica de Placas. Afirmaría entonces que la tierra estaba conformada por diversas capas, algunas de la cuales se fracturaban en grandes bloques, denominados placas tectónicas. Estas serían removidas constantemente por fuerzas provenientes de los estratos más profundos de la tierra, por lo que las cortezas oceánicas y continentales sufrirían transformaciones geográficas.

Hoy día la mayor parte de lo que fue la cuenca y la corteza del gran océano Pantalasa ha sido arrastrada bajo la placa tectónica de América del Norte y la placa Euroasiática.

Estudios basados en historiales de tomografías sísmicas afirman además que las placas tectónicas en bordes convergentes, denominadas también “subducidas”, que se visualizan en diversos mantos submarinos indican que al menos varios océanos o mares diferentes se pueden definir como consecuencia del océano Pantalasa.

Restos de la placa oceánica de Pantalasa puede ser encontrados en las placas de Juan de Fuca, Gorda, Cocos y Nazca, las cuales en el pasado formaron parte de una placa mayor llamada Farallón.

Panthalassa

Cuando Panthalassa rodeaba Pangea, Laurasia estaba ubicada en el hemisferio norte y Gondwana en el sur.

Esquema de las masas de tierra actuales agregadas para la orientación.

Panthalassa, también conocido como Océano Panthalassic o Océano Panthalassan (del griego πᾶν «todos» y θάλασσα «mar»), [1] fue el superoceán que rodeaba al supercontinente Pangea. Durante la transición paleozoicamesozoica c. 250 Ma ocupaba casi el 70% de la superficie terrestre. Su fondo oceánico ha desaparecido por completo debido a la subducción continua a lo largo de los márgenes continentales en su circunferencia.[2] A Panthalassa también se le conoce como Paleo-Pacífico («viejo Pacífico») o Proto-Pacífico porque el Océano Pacífico se desarrolló desde su centro en el Mesozoico hasta el presente.

El supercontinente Rodinia comenzó a separarse 870–845 Ma, probablemente como consecuencia de un superplume causado por avalanchas de losas del manto a lo largo de los márgenes del supercontinente. En un segundo episodio c. 750 Ma, la mitad occidental de Rodinia comenzó a separarse: el Kalahari occidental y el sur de China se separaron de los márgenes occidentales de Laurentia; y por 720 Ma Australia y la Antártida Oriental también se habían separado.[3] En el Jurásico Tardío, la Placa del Pacífico se abrió originando desde una unión triple entre las placas Panthalassic Farallon, Phoenix e Izanagi. Panthalassa se puede reconstruir en base a líneas magnéticas y zonas de fractura preservadas en el Pacífico occidental.[4]

En Laurentia occidental (América del Norte), un episodio tectónico que precedió a esta ruptura produjo divisiones fallidas que albergaban grandes cuencas depositarias en Laurentia Occidental. El océano global de Mirovia, un océano que rodeaba Rodinia, comenzó a reducirse a medida que el océano panafricano y Panthalassa se expandían.

Hace entre 650 y 550 millones de años, comenzó a formarse otro supercontinente: Pannotia, que tenía la forma de una «V». Dentro de la «V» estaba Panthalassa, fuera de la «V» estaban el Océano Panafricano y los remanentes del Océano Mirovia.

Reconstrucción de la cuenca del océano

La mayoría de las placas oceánicas que formaron el fondo oceánico de Panthalassa han sido subducidas y las reconstrucciones tectónicas de placas tradicionales basadas en anomalías magnéticas, por lo tanto, solo pueden usarse para restos del Cretácico y posteriores. Los antiguos márgenes del océano, sin embargo, contienen terranes alóctonos con arcos volcánicos intra-pantlásicos triásicos-jurásicos preservados, que incluyen Kolyma-Omolon (noreste de Asia), Anadyr-Koryak (Asia oriental), Oku-Niikappu (Japón) y Wrangellia y Stikinia (oeste de América del Norte). Además, la tomografía sísmica se está utilizando para identificar losas subducidas en el manto, de donde se puede derivar la ubicación de las antiguas zonas de subducción del Pantlásico. Una serie de tales zonas de subducción, llamadas Telkhinia, definen dos océanos separados o sistemas de placas oceánicas: los océanos Pontus y Thalassa.[5] Océanos marginales nombrados o placas oceánicas incluyen (en el sentido de las agujas del reloj) Mongol-Ojotsk (ahora una sutura entre Mongolia y el Mar de Ojotsk ), Oimyakon (entre el craton asiático y Kolyma-Omolon), Slide Mountain Ocean (Columbia Británica), [6] y Mezcalera (oeste de México).

Margen oriental

El margen occidental (coordenadas modernas) de Laurentia se originó durante la desintegración neoproterozoica de Rodinia. La Cordillera de América del Norte es un orógeno de acreción que creció mediante la adición progresiva de terranes alóctonas a lo largo de este margen del Paleozoico Tardío. El volcanismo devónico de arco posterior revela cómo este margen pantlásico oriental se convirtió en el margen activo que todavía se encuentra en el medio paleozoico. La mayoría de los fragmentos continentales, arcos volcánicos y cuencas oceánicas agregadas a Laurentia de esta manera contenían faunas de afinidad Tethyan o asiática. Los terranes similares agregados al norte de Laurentia, en contraste, tienen afinidades con Baltica, Siberia y el norte de Caledonia. Estos últimos terrenos probablemente se acrecentaron a lo largo del margen oriental de Panthalassa por un sistema de subducción de estilo escocés caribeño.[7]

Margen occidental

La evolución del límite Panthalassa-Tethys es poco conocida porque se conserva poca corteza oceánica; tanto el fondo Izanagi como el conjugado del Océano Pacífico están subducidos y la cordillera oceánica que los separaba probablemente se subduce c. 60–55 Ma. Hoy en día, la región está dominada por la colisión de la placa australiana con una compleja red de límites de placas en el sudeste asiático, incluido el bloque Sundaland. La propagación a lo largo de la cresta del Pacífico y Phoenix finalizó a 83 Ma en el Osbourn Trough en la Zanja de TongaKermadec.[4]

Durante el Permian, los atolones se desarrollaron cerca del ecuador en los montes submarinos del medio Panthalassic. A medida que Panthalassa se sometió a una subducción a lo largo de su margen occidental durante el Jurásico Triásico y el Jurásico Temprano, estos montes submarinos y atolones paleolíticos se agregaron como bloques y fragmentos de piedra caliza alóctona a lo largo del margen asiático. [8] Uno de estos complejos de atolón migratorio ahora forma un cuerpo de piedra caliza de dos kilómetros de largo (1.2 mi) y de 100 a 150 metros de ancho (330–490 pies) en el centro de Kyushu , suroeste de Japón.[9]

Fusuline foraminifera, un orden ahora extinto de organismos unicelulares, desarrolló gigantismo —el género Eopolydiexodina, por ejemplo, alcanzó un tamaño de hasta 16 cm (6,3 pulgadas )— y sofisticación estructural, incluidas las relaciones de simbiontes con algas fotosintetizantes, durante el período Carbonífero, y Permian. El evento de extinción Pérmico-Triásico c. 260 Ma, sin embargo, puso fin a este desarrollo con solo los taxones enanos que persisten en todo el Pérmico hasta la extinción final por fusulina c. 252 Ma. Las fusulinas permianas también desarrollaron un notable provincialismo por el cual las fusulinas se pueden agrupar en seis dominios.[10] Debido al gran tamaño de Panthalassa, cien millones de años pudieron separar la acumulación de diferentes grupos de fusulines. Suponiendo una tasa de acreción mínima de 3 centímetros por año (1.2 pulgadas / año), las cadenas de montañas submarinas en las que evolucionaron estos grupos estarían separadas por al menos 3.000 km (1.900 mi), aparentemente estos grupos evolucionaron en entornos completamente diferentes.[11] Una caída significativa en el nivel del mar al final del Pérmico condujo al fin de la extinción de Capitanian. La causa de esta extinción está en disputa, pero un candidato probable es un episodio de enfriamiento global que transformó una gran cantidad de agua de mar en hielo continental.[12]

Los montes submarinos acrecentados en el este de Australia como parte del orógeno de Nueva Inglaterra revelan la historia de los puntos calientes de Panthalassa.[13] Desde el Devónico Tardío hasta el Carbonífero, Gondwana y Panthalassa convergieron a lo largo del margen este de Australia a lo largo de un sistema de subducción por inmersión en el oeste que produjo (de oeste a este) un arco magmático, una cuenca del antebrazo y una cuña de acreción. La subducción cesó a lo largo de este margen en el Carbonífero Tardío y saltó hacia el este. Desde el Carbonífero Tardío hasta el Pérmico Temprano, el orógeno de Nueva Inglaterra estuvo dominado por un entorno extensional relacionado con una transición de subducción a deslizamiento. La subducción se reinició en el Pérmico y las rocas graníticas del batolito de Nueva Inglaterra se produjeron mediante un arco magmático, lo que indica la presencia de un margen de placa activa a lo largo de la mayor parte del orógeno. Los restos de Permian a Cretáceo de este margen convergente, conservados como fragmentos en Zealandia (Nueva Zelanda, Nueva Caledonia y el Aumento del Señor Howe), fueron saqueados de Australia durante la separación del Cretácico Tardío al Terciario Temprano del este de Gondwana y la apertura del Mar de tasman.[14] La placa de unión cretácica, ubicada al norte de Australia, separaba el Tethys oriental de Panthalassa.[15]

Paleo-oceanografía

Panthalassa era un océano del tamaño de un hemisferio, mucho más grande que el Pacífico moderno. Podría esperarse que el gran tamaño resulte en patrones de circulación de corrientes oceánicas relativamente simples, como un solo giro en cada hemisferio, y un océano mayormente estancado y estratificado. Sin embargo, los estudios de modelación sugieren que hubo un gradiente de temperatura de la superficie del mar (SST) este-oeste en el que el agua más fría se sacó a la superficie al aflorar en el este mientras que el agua más cálida se extendió hacia el oeste hasta el océano Tethys. Los giros subtropicales dominaron el patrón de circulación. Las dos bandas hemisféricas estaban separadas por la ondulante zona de convergencia intertropical (ZCIT).[dieciséis]

En el norte de Panthalassa había vientos del oeste de latitud media al norte de 60 ° N con vientos del este entre 60 ° N y el ecuador. La circulación atmosférica al norte de 30 ° N está asociada con la Alta del Norte de Panthalassa que creó la convergencia de Ekman entre 15 ° N y 50 ° N y la divergencia de Ekman entre 5 ° N y 10 ° N. Un patrón que resultó en el transporte Sverdrup hacia el norte en regiones de divergencia y hacia el sur en regiones de convergencia. Las corrientes fronterizas occidentales dieron lugar a un giro del Norte de Panthalassa subtropical anticiclónico en latitudes medias y una circulación anticiclónica meridional centrada en 20 ° N.[dieciséis]

En el norte tropical de Panthalassa, los vientos alisios crearon flujos hacia el oeste, mientras que los flujos del ecuador fueron creados por vientos del oeste en latitudes más altas. En consecuencia, los vientos alisios alejaron el agua de Gondwana hacia Laurasia en la corriente ecuatorial del norte de Panthalassa. Cuando se alcanzaran los márgenes occidentales de Panthalassa, las intensas corrientes de los límites occidentales formarían la corriente oriental de Laurasia. En las latitudes medias, la corriente del norte de Panthalassa traería el agua de regreso al este, donde una débil corriente del noroeste de Gondwana finalmente cerraría el giro. La acumulación de agua a lo largo del margen occidental, junto con el efecto Coriolis, habría creado una Corriente Contador Ecuatorial de Panthalassa.[dieciséis]

En el sur de Panthalassa, las cuatro corrientes del giro subtropical, el sur de Panthalassa, giraron en sentido contrario a las agujas del reloj. La corriente meridional de Panthalassa ecuatorial fluyó hacia el oeste entre el ecuador y 10 ° S hacia la occidental, intensa Corriente de Panthalasssa del Sur. La Corriente Polar del Sur luego completa el giro como la Corriente Suroeste de Gondwana. Cerca de los polos, los vientos del este crearon un giro subpolar que giraba en sentido horario.[dieciséis]

Mapa del Océano Panthalassa hace unos 200 millones de años. Los óvalos blancos muestran las ubicaciones reconstruidas de arcos volcánicos conocidos de rocas continentales.

Otra denominación admitida es la de Océano Mundial

Océano mundial u océano global (de las expresiones inglesas world ocean y global ocean) es el sistema interconectado de masas de agua oceánicas o marinas de la Tierra. Comprende la mayor parte de la hidrosfera. La expresión «océano planetario» se utiliza más habitualmente en planetología para denominar a la masa oceánica de cualquier planeta oceánico.

La unidad y continuidad del océano mundial, con un intercambio relativamente libre entre sus partes, es de fundamental importancia para la oceanografía.1​ Está dividido en varias zonas oceánicas principales que están delimitadas por los continentes y que tienen diferentes características oceanográficas. Estas divisiones son: el océano Atlántico, el océano Ártico (a veces considerado como un mar del Atlántico), el océano Índico, el océano Pacífico y el océano Antártico o Austral (a veces, considerado sólo la parte sur de los océanos Atlántico, Índico y Pacífico). A su vez, las aguas oceánicas están intercaladas por muchos mares más pequeños y otros cuerpos de agua.

El océano mundial ha de haber tenido una u otra forma de existencia en la Tierra desde los primeros eones (origen del agua en la Tierra),2​ y fue esencial para el origen y el desarrollo de la vida. Su forma no ha sido constante, ya que la deriva continental la ha ido cambiando continuamente (en la escala de tiempo geológico –tectónica de placas-). Para el periodo (finales del Paleozoico y comienzos del Mesozoico) en que la mayor parte de las tierras emergidas formaban un único continente, que los paleogeólogos denominan Pangea («toda la tierra»), se denomina Panthalassa («todo el mar») a ese océano único. En distintas ocasiones de la historia geológica se han formado supercontinentes y superocéanos.

La percepción de su existencia se remonta a la antigüedad clásica, cuando se lo divinizaba (ΏκεανόςOkeanós-). La acuñación del concepto contemporáneo de «océano mundial» se debe al oceanógrafo ruso Yuly Shokalsky,3​ que utilizó la expresión en su obra Oceanografía (1917) para describir lo que es básicamente un océano continuo y único, que cubre la mayor parte de la Tierra y rodea todas las masas continentales.

En tanto que continuo, el océano mundial se puede visualizar como centrado en el océano Antártico. El Atlántico, Índico y Pacífico pueden ser vistos como grandes bahías o lóbulos extendiéndose hacia el norte desde el océano Antártico. Más al norte, el Atlántico se abre en el océano Ártico, que está conectado con el Pacífico por el estrecho de Bering.

Deja un comentario

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.