Este Mundo, a veces insólito

Satélite regresa con muestras de cometa

Rate this post
Satélite regresa con muestras de cometa

Stardust (sonda espacial)

Stardust

Representación artística de la sonda Stardust

Información general

Organización: NASA

Estado: Finalizada

Fecha de lanzamiento: 7 de febrero de 1999

Aplicación: Sonda de cometa

Elementos orbitales

Tipo de órbita: Heliocéntrica

Stardust es una sonda espacial estadounidense interplanetaria lanzada el 7 de febrero de 1999 por la NASA. Su propósito fue investigar la naturaleza del cometa 81P/Wild (o Wild 2) y su coma.

Misión y retorno

La Stardust voló cerca del Wild 2 el 2 de enero de 2004. Durante su paso por la cola del cometa recolectó muestras de polvo de su coma y tomó fotografías detalladas de su núcleo de hielo. Stardust aterrizó el 15 de enero de 2006 en el Gran Desierto del Lago Salado, en Utah, cerca del Campo de Pruebas del Ejército de los EE.UU. (Dugway), con la cápsula que contiene la muestra de material espacial.

Es el primer intento de recoger polvo espacial más allá de la Luna. La edad de las partículas se remonta posiblemente a los orígenes del Sistema Solar.

Imagen de la cápsula con las muestras a su regreso.

En el momento de su retorno a la Tierra, la cápsula viajaba a 46 446 kilómetros por hora (28 860 millas por hora), lo cual la convierte en el objeto hecho por el hombre que más rápido ha reentrado en la atmósfera terrestre. Como punto de comparación, el representante de la NASA en Utah declaró que a esa velocidad sería capaz de viajar entre Salt Lake City y Nueva York en menos de 6 minutos. Una gran bola de fuego y la onda acústica debió haberse notado al oeste de Utah y al este de Nevada.

Los responsables de la NASA han dicho que la nieve pronosticada por el Servicio Nacional del Clima, sobre una alerta de 12 pulgadas y acompañada de tormentas eléctricas, no representó ninguna complicación para la reentrada. [1]

Donald Brownlee, de la Universidad de Washington, es el investigador principal de la misión Stardust.

La nave

La nave espacial Stardust se compone de una caja principal en forma de bus de 1,6 m de largo, 0,66 m de ancho y 0,66 m de profundidad con una antena de alta ganancia instalada en una de las caras de la caja. La masa total de la nave espacial incluyendo la cápsula de retorno y 85 kg de combustible es de 385 kg. El bus está hecho de paneles planos fabricados con finas láminas de fibras de grafito en resina polycyanate cubriendo un ligero núcleo de nido de abeja de aluminio. Dos paneles solares rectangulares (4,8 m de punta a punta) conectados por puntales se extienden a los lados opuestos de la nave espacial a lo largo del eje longitudinal de la nave espacial con su superficie en el mismo plano de esta cara, que se extiende paralela a los demás en sus direcciones de largo. La cápsula de reentrada de muestras en forma de cono de 0,8 m de diámetro, 0,5 m de altura, 46 kg se adjunta por su extremo más estrecho a la cara trasera del bus. Un disco en forma de pala de recogida de muestras se extiende desde la cápsula durante los períodos de muestreo, y se almacenan dentro de la cápsula cerrada por una tapa cuando no esté en uso. Las unidades de propulsión están en la cara posterior de la nave. Un protector de polvo de Whipple en la parte delantera de la nave protege el núcleo principal del bus y está equipado con monitores de flujo de polvo, vibro-sensores acústicos capaz de detectar los impactos de partículas en el escudo. Los paneles solares también cuentan con dos pequeños escudos protectores.

La nave también está equipada con una cámara de navegación óptica, un monitor de flujo de polvo, y un espectrómetro de polvo / analizador de impacto de partículas. No hay plataformas de exploración, todos los instrumentos de ciencia están montados en el cuerpo. La propulsión es proporcionada por un sistema de monopropelentes de hidracina. El control de actitud se mantiene por ocho propulsores de 4,4 N y ocho propulsores de 0.9 N, todo montado en la parte inferior de la nave, lejos del colector de la muestra para evitar la contaminación. La detección de actitud de tres ejes es provista por una cámara de estrellas y giroscópico unidad de medición inercial. La alimentación se suministralos paneles solares de silicio que proporcionan entre 170 y 800 W dependiendo de la distancia desde el sol. En el encuentro con el cometa Wild-2 se generaron cerca de 330 W. Las telecomunicaciones se realizan a través de la banda X por medio de una antena de baja ganancia de 0,6 m de diámetro. La energía del sistema es de 15 W, la tasa de datos esperados en el momento del encuentro es de 7,9 kbits/seg con la antena de 70 m de la estación terrena «Deep Space Network» de la NASA.

Para poder capturar las partículas de polvo del cometa, la nave espacial Stardust usó un material extraño llamado, aerogel. A medida que se acercaba al cometa, el polvo se movía muy de prisa – a aproximadamente 21 960 kilómetros (13 650 millas) por hora -. Aerogel es tan liviano y esponjoso que pudo detenerse y recoger algunos granos sin destruirlos. En enero del 2006, una cápsula de la nave espacial regresó a tierra con granos de polvo. Así mismo, durante su viaje junto a Wild 2, Stardust logró obtener las mejores fotografías del núcleo de un cometa.

Primera nave que recoge muestras de las proximidades de un cometa, y las trae de vuelta a la Tierra.

Enlaces externos

La nave regresó a la Tierra en enero de 2006

Las partículas traídas por la ‘Stardust’ arrojan nuevos datos sobre el origen de los cometas

Imagen de una de las partículas atrapadas en el aerogel. (Foto: NASA)

Actualizado lunes 18/12/2006 12:33 (CET)

EUROPA PRESS

MADRID.- El análisis de los materiales recuperados del cometa Wild 2 por la sonda ‘Stardust’ de la NASA, que suponen los primeros componentes obtenidos ‘in situ’ de un objeto del sistema solar, podría aportar nuevos datos sobre el origen de los cometas y del Sistema Solar, hace 4.570 millones de años. El estudio, en el que ha participado el Doctor en Astrofísica Josep M. Trigo Rodríguez, del Instituto de Ciencias del Espacio (CSIC) e Instituto de Estudios Espaciales de Cataluña (IEEC), muestra que el disco protoplanetario a partir del que se formarían los planetas se extendía más allá de la distancia hoy ocupada por Neptuno.

Las principales conclusiones de la investigación aparecen publicadas esta semana en dos artículos de la revista ‘Science’. Se trata de dos trabajos que profundizan en la estructura y composición de los cometas, objetos helados formados en regiones suficientemente alejadas del Sol para haber permitido la consolidación de materiales rocosos diminutos junto con abundantes hielos, mezcla de componentes como el agua, el metano o el amoníaco.

Según explicó Josep M. Trigo, «particularmente hemos estudiado la composición química e isotópica de las partículas que hoy en día desprende el cometa periódico ‘Wild 2’ a fin de entender cómo este objeto se ha formado y cómo es representativo de los materiales primigenios que darían origen a los planetas».

Entre las conclusiones más relevantes, el investigador destaca que el cometa ‘Wild 2’ es un objeto que podría considerarse muy primitivo, es decir, su contenido mineralógico es representativo de los materiales que giraban alrededor del joven Sol formando el disco protoplanetario.

«En otras palabras -señala el científico- se ha podido recuperado material tal y como era hace 4.570 millones de años, cuando los primeros objetos grandes, llamados planetesimales y cometesimales, según su mayor abundancia en componentes rocosos o volátiles, respectivamente, estaban agregándose por la colisión de partículas más pequeñas».

Esto supone una prueba fehaciente de que las teorías de formación de los cometas y los planetas son correctas, es decir, se formaron por la acumulación de objetos más pequeños con materiales diminutos condensados de la nebulosa solar o de estrellas cercanas (granos presolares).

Los resultados permiten comprender mejor las primeras etapas formativas del sistema solar y confirman los modelos actuales de colapso y formación de un disco de material alrededor del joven Sol.

Así, los investigadores han descubierto que el disco protoplanetario del que se formarían posteriormente los planetas se extendía más allá de la distancia hoy ocupada por el planeta Neptuno y que era una región plagada de innumerables partículas con dimensiones de polvo fino (pocas micras).

Una parte de ellas aparecieron fruto de la condensación del gas remanente que persistía a su alrededor tras nacer el Sol y que según enfriaba daba origen a granos minerales, pero otra parte importante que ha sido preservada contenía partículas expulsadas desde estrellas cercanas como muestra su composición isotópica.

Los materiales contenidos en el cometa ‘Wild 2’ están mezclados con abundantes hielos que no eran estables en la proximidad solar, lo que sugiere que este objeto se formó en una región alejada del Sol, el llamado cinturón de Kuiper, situado más allá de Neptuno.

La gran sorpresa es que, a pesar de su formación a tan grandes distancias del Sol, el cometa ‘Wild 2’ está formado en buena medida por diminutos granos minerales refractarios que debieron formarse muy cerca del Sol, como por ejemplo granos de olivino y troilita. «Esto quiere decir que debieron existir procesos de turbulencia a gran escala que enviaron esos materiales a la región externa del disco protoplanetario donde se formó este cometa», explica Trigo.

Los materiales estudiados en la misión son primigenios y representativos de aquellos que se forman en otros sistemas planetarios en formación. A partir de estos diminutos granos minerales es posible estudiar las estrellas que rodeaban al Sol durante su formación (granos presolares) o bien datar el tiempo de formación de nuestro sistema solar (4.570 millones de años).

Trigo explica que dado que la deceleración de las partículas se ha realizado utilizando un aerogel de dióxido de silicio (SiO2), el estudio de cómo esa captura ha afectado a los materiales primigenios tiene innumerables aplicaciones prácticas en el desarrollo de nuevos aerogeles que se puedan emplear en el futuro para la captura de partículas de altísima velocidad (22.000 km/hora en el caso de Stardust).

Por supuesto, estos aerogeles de alta tecnología tendrán innumerables aplicaciones prácticas en la industria dada su baja densidad (1 metro cúbico del empleado en la misión pesaría sólo 3 kg) pero gran consistencia.

Son los primeros materiales recuperados «in situ» de un objeto del sistema solar, desde que en los años setenta las misiones ‘Apolo’ de la NASA y ‘Luna’ de la Unión Soviética trajesen cientos de rocas lunares.

La nave Stardust se encuentra con una sorpresa

Cuando la nave Stardust de la NASA voló junto al cometa Wild-2, encontró algo que sorprendió a los científicos

Enero 16, 2004: El 2 de enero de 2004, la nave Stardust (Polvo de Estrellas) de la NASA se aproximó al cometa Wild 2 y voló en medio de una tormenta. Ráfagas de polvo cometario apedrearon al aparato. Por lo menos media docena de gránulos que se movían más rápido que una bala penetraron las defensas exteriores de la Stardust. Los 16 motores cohete de la nave lucharon por mantener el curso mientras un recolector, de un tamaño similar al de una raqueta de tenis, recogía algo del polvo para traerlo a la Tierra dentro de dos años.

Todo sucedía como se esperaba.

Luego vino la sorpresa. Ocurrió mientras la Stardust pasaba junto al núcleo del cometa, a solamente 236 km de distancia, y lo fotografiaba utilizando una cámara de navegación. La intención era utilizar las imágenes para mantener a la nave en curso. Revelaron también un pequeño mundo de asombrosa belleza.

Derecha: El núcleo del cometa Wild-2 fotografiado por la Stardust con una resolución aproximada de 20 metros. Haga click en la imagen para ver una versión ampliada.

En el corazón de cada cometa hay una «bola de nieve sucia», un núcleo compacto de hielo y polvo que el sol vaporiza, poco a poco, para formar la espectacular cola del cometa. Estos núcleos son difíciles de observar. Por un lado, la mayoría son más oscuros que el carbón; reflejan muy poco de la luz solar hacia las cámaras. Además, están escondidos muy adentro de una nube de gas y polvo, llamada «coma». La zambullida de la Stardust dentro de la coma del Wild-2 le permitió ver al núcleo desde una corta distancia.

Sobrevuelos anteriores, en el cometa Halley por la sonda europea Giotto y en el cometa Borrelly por la Deep Space I de la NASA revelaron núcleos grumosos sin un terreno muy interesante (como se esperaba). Estos cometas habían sido calentados por el Sol a lo largo de muchos miles de años. El calor solar había fundido sus rasgos más sobresalientes.

El cometa Wild-2, sin embargo, luce diferente. «Estábamos asombrados por la superficie rica en rasgos del cometa», dice Donald Brownlee de la Universidad de Washington, investigador principal de la misión. «Es altamente compleja. Hay rocas del tamaño de graneros, riscos de 100 metros de alto, y un poco de terreno extraño, diferente a todo lo que hayamos visto antes. Hay también algunos elementos circulares», agrega, «que parecen cráteres de impacto tan extensos como de un kilómetro de diámetro».

«Los altos riscos nos dicen que la corteza del cometa es razonablemente sólida», hace notar Brownlee. Es probablemente una mezcla de material rocoso de grano fino que se mantiene unido por agua congelada, monóxido de carbono y metanol. Ciertamente, un aterrizador podría bajar hasta allí, o un astronauta podría caminar por la superficie sin preocuparse demasiado por un colapso del suelo.

Un astronauta parado en el cometa Wild-2 vería un paisaje realmente fantástico, especula Brownlee. «Lo imagino dentro de uno de los cráteres, rodeado de los enormes riscos». Agujas heladas, tan altas como una persona, se elevarían sobre el suelo del cráter. «Serían los equivalentes cometarios de las «púas de nieve», esas pequeñas crestas dentadas que se forman cuando la nieve queda expuesta a la luz solar y se funde.

Salir del cráter resultaría fácil. «Simplemente saltando», dice Brownlee, «pero no muy fuerte». La gravedad del cometa es de solamente 0,0001 g, así «que uno podría fácilmente ponerse en órbita».

Algunas de las fotos de la Stardust revelan chorros gaseosos. «Los chorros provienen de regiones activas en la superficie del cometa, probablemente fisuras o ventilas, donde el hielo se está vaporizando y escapando hacia el espacio», dice Brownlee. Así es como se transfiere la masa desde el núcleo del cometa hacia su cola.

Izquierda: Exposiciones prolongadas del núcleo del Wild-2 revelan tenues chorros indicados por las flechas. Crédito: NASA/Stardust.

Vistos desde la superficie, los chorros serían casi transparentes. Pero un astronauta podría detectarlos al buscar «polvo mezclado con el gas. Los gránulos de polvo centelleando a la luz del sol parecerían como balas trazadoras disparadas desde el suelo».

Un explorador cuidadoso recorrería el núcleo entero de 5 kilómetros en unas pocas horas, saltando alto sobre la superficie, esquivando algún chorro ocasional. «¡Qué experiencia sería ésa!», dice.

Hay miles de millones de cometas en el sistema solar. «Hemos visto de cerca solamente a tres de ellos», dice Brownlee. Y uno de los tres, el cometa Halley, presentó a la cámara su lado oscuro. Así que es demasiado pronto para decir que el cometa Wild-2, entre los cometas, es realmente inusual.

A diferencia de los cometas Halley y Borrelly, hace notar Brownlee, «Wild-2 es un recién llegado al sistema solar interior». Por miles de millones de años se mantuvo en órbita solar en el frío espacio profundo más allá de Júpiter hasta 1974, cuando fue empujado por la gravedad de Júpiter a una órbita más próxima al sol. Desde entonces, el cometa ha pasado cerca del Sol solamente cinco veces; el calor del sol está recién comenzando a modelar su superficie.

Y de acuerdo con Brownlee, ésa podría ser la clave para la apariencia del cometa. «La superficie de Wild-2 es una mezcla de lo nuevo y lo viejo que no habíamos notado antes», explica. Los rasgos jóvenes incluyen posibles sumideros que colapsan al calentarse el terreno. Los cráteres de impacto y sus eyecciones, por otro lado, son viejas cicatrices del tiempo pasado en el sistema solar exterior.

Derecha: Dentro de una minúscula cápsula estilo Apolo, las muestras del Wild-2 regresarán a la Tierra en 2006. [más información]

Las partes viejas del Wild-2 son las que hacen del cometa un blanco atractivo para la sonda Stardust, que capturó más de mil gránulos de polvo del cometa durante su sobrevuelo. Ese material, poco alterado desde la formación del sistema solar, podría decirnos mucho acerca de nuestros orígenes.

Los preciosos granos recolectados regresarán a la Tierra en el 2006 para ser analizados por los científicos. Si una simple imagen de la cámara de navegación puede sorprender a los investigadores, imaginemos lo que habrá allí almacenado cuando puedan poner sus manos sobre mil pedazos del propio cometa.

 

Cometa Wild 2

El cometa Wild 2 lleva ese nombre en honor al científico que lo descubrió. Paul Wild es un astrónomo suizo que descubrió el cometa en enero de 1978. Wild 2 se pronuncia, «Vilt 2».

El cometa orbita alrededor del Sol cada 6.39 años, lo cual es un corto período de tiempo para un cometa. ¡Algunos cometas tardan más de 100 años en darle una sola vuelta al Sol!. La órbita de un cometa no es circular. Su órbita es de forma ovalada. Los astrónomos la llaman elipse. Cuando el cometa se encuentra en el extremo interno de la elipse, está muy cerca del Sol. Cuando se encuentra en la parte externa, está lejos del Sol. La órbita de Wild 2 lo acercará mucho más al Sol, que el planeta Marte . La órbita también llevará al cometa más allá de Júpiter.

Cuando vemos a un cometa desde Tierra, lo que en realidad vemos es polvo y gas que emana de él. El gas y el polvo provienen de la «coma» y de las colas, que se encuentran a miles de kilómetros (millas) de largo. A la parte sólida de un cometa se le llama núcleo, y se encuentra en medio de la coma. El núcleo de Wild 2 es de sólo cinco km. (tres millas) de diámetro.

En enero del 2004, una nave espacial llamada Stardust voló junto al cometa Wild 2, y obtuvo unas excelentes fotografías del núcleo, y recogió algunas partículas de polvo. La nave espacial Stardust traerá estas partículas de regreso a la Tierra, para que los científicos las puedan estudiar.

Este diagrama muestra la forma y tamaño de la órbita del cometa Wild 2. La órbita del cometa se ve en color azul claro. También se ven las órbitas de Júpiter, Marte y la Tierra. Imagen cortesía de la NASA/JPL.

Deja un comentario

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.