Este Mundo, a veces insólito

Calendario
diciembre 2024
L M X J V S D
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

Vehículos planetarios

Denominamos “Vehículos planetarios”, también astromóviles, a aquellos móviles, tengan forma de vehículo terrestre o no, y que tengan que desplazarse por la superficie (o cerca de ella) de un planeta u objeto astronómico, con la misión de transportar astronautas, objetos, laboratorios, etc, o cualquier otra misión, y siempre que se desplacen por sus medios. Para evitar contaminaciones (en lo posible), son vehículos eléctricos. Algunos son vehículos guiados por los astronautas (como el rover de los Apolo), y otros están guiados por radio. Evidentemente se habrán desplazado sobre la Tierra, para probar su utilidad, autonomía, etc.

Amartizajes

Alunizajes

Nombre fecha Utilizado en País Comentarios
Lunokhod 1 11-1970 Luna U.R.S.S. Dirigido
Rover Apolo 15-16-17 1971-1972 Luna E.E.U.U. Pilotados
Lunokhod 2 01-1973 Luna U.R.S.S. Dirigido
Sojourner 07-1997 Marte E.E.U.U. Dirigido
Spirit 01-2004 Marte E.E.U.U. Dirigido
Oportunity 01-2004 Marte E.E.U.U. Dirigido
Curiosity 08-2012 Marte E.E.U.U. Dirigido
Yutu 2013-2014 Luna China Dirigido
Yutu 2
2019-2020 Luna China Dirigido
Perseverance
07-2020 Marte E.E.U.U. Semi-dirigido
Ingenuity
07-2020 Marte EE.UU. Semi-dirigido
Zhurong
05-2021 Marte China Dirigido
Pragyaan
08-2023 Luna India Dirigido

Opportunity

MER-B (Opportunity) es un robot rover activo en el planeta Marte desde 2004, es el segundo de los dos vehículos robóticos de la NASA que aterrizaron con éxito en el planeta Marte en 2004. El vehículo aterrizó el 25 de enero de 2004 a las 05:05 TUC, MSD 46236 14:35 AMT, 18 Scorpius 209 Dariano). Su gemelo, MER-A (Spirit), había aterrizado en Marte tres semanas antes, el 3 de enero de 2004. Ambos robots forman parte del ‘Programa de Exploración de Marte’ de la NASA.Opportunity1

Aterrizaje

El Opportunity aterrizó en Meridiani Planum en las coordenadas 354,4742º E 1,9483º S, aproximadamente a 24 km al este de su blanco inicial. Aunque Meridiani es un lugar llano, sin campos de rocas, el Opportunity -tras rebotar 26 veces contra la superficie del suelo marciano- rodó hasta caer en un pequeño cráter de aproximadamente 20 m de diámetro. El 28 de enero de 2004 la NASA anunció que el lugar de aterrizaje ahora se llama ‘Challenger’, en honor a los siete astronautas muertos en el año 1986, cuando el transbordador explotó poco después del lanzamiento en la misión Challenger (STS-51L).

La duración de la misión

La duración de la misión original para Opportunity era de 90 días marcianos. Muchos miembros de la misión esperaban que pudieran funcionar más tiempo, y el 8 de abril de 2004 la NASA anunció que apoyaba la extensión de la misión hasta septiembre de 2004, dotándola con fondos y mano de obra.

En julio de 2004, los encargados de la misión empezaron a hablar de extender la misión incluso más allá de los 250 días. Si los robots pudieran sobrevivir el invierno, muchas de las metas científicas más interesantes se podrían conseguir.1 En 2015, tras más de once años en Marte, el Opportunity continúa sus labores de investigación.2

Los hechos y los descubrimientos

La primera panorámicaOpportunity3

La vista panorámica de 360º la tomó la cámara de navegación del robot poco después de tocar tierra en Meridiani Planum, en Marte. El robot está en un pequeño cráter de 20 m de diámetro y cerca de un afloramiento rocoso. En las imágenes tomadas durante la caída se ve otro cráter cercano (Endurence).

El Opportunity aterriza en un cráter

El interior de un cráter que rodea el Opportunity en Meridiani Planum se puede ver en esta imagen en color de la cámara panorámica del robot. Era el lugar de desembarco más oscuro visitado por una nave espacial en Marte. El margen del cráter estaba a unos 10 m del robot. El cráter donde se halla el robot tiene 22 m de diámetro × 3 m de profundidad.

Los científicos se muestran intrigados por la abundancia de afloramientos de piedra dispersa a lo largo del cráter, así como la tierra del cráter que parecía ser una mezcla de granos grises y rojizos. Los científicos de la NASA se muestran muy entusiasmados al aterrizar en un cráter lo que ellos llamaron “hoyo de saque desde 450 millones de km” comentó Steven Squyres, utilizando un término de golf. Al cráter se le llamó Cráter Águila.

El afloramiento Opportunity Ledge

El afloramiento de rocas cerca del Opportunity lo captó la cámara en la primera panorámica y es la primera roca desnuda que se ve sobre Marte. Los científicos creen que las piedras surgieron en esta zona y o bien son depósitos dOpportunity8e ceniza volcánica o sedimentos formados por viento o agua, lo que constituye un “Cofre del tesoro” geológico. Se le llamó Opportunity Ledge porque estas rocas estratificadas a sólo 8 m del Opportunity constituyen una oportunidad única. Estas rocas surgieron en la zona y no como en el caso del Spirit.

Estos depósitos miden sólo 10 cm de alto y los estratos son “de grosor menor que un dedo”, sólo unos mm de espesor en algunos casos. Para los geólogos, las piedras probablemente se originaron de sedimentos llevados por el agua o al depositarse ceniza volcánica. Si las rocas son sedimentarias, el agua es una fuente más probable que el viento.

En el Sol 15, los orbiter localizan y fotografían al Opportunity en su propio cráter. Se ha desplazado 4 m acercándose a la roca Montaña de Piedra en el área del afloramiento del cráter. Al subir ligeramente la pendiente pudo mirar por encima del borde del cráter y ver su paracaídas y escudo de protección que se hallan a 440 m.

Se trata de un terreno muy suelto con granos muy finos o polvo, en contraste con la arenisca de la Tierra que se forma con granos bastante grandes y aglomerados. El robot ha resbalado varias veces porque el terreno es muy suelto.

Está sembrado de pequeñas esferas grisáceas (esférulas) que están también “incrustadas en los delgados estratos en avanzado grado de erosión”. El afloramiento tiene varias veces más azufre que en cualquier otro lugar investigado en Marte.Opportunity4

Una imagen recibida el 10 de febrero (Sol 16) muestra que las capas delgadas en el lecho de roca, no son siempre paralelas. Estas líneas no paralelas dan pistas de algún “cambio en el ritmo” bajo el flujo volcánico, viento o agua cuando se formaron las rocas. Estas capas con líneas que convergen es un descubrimiento significativo para los científicos que planearon esta misión y sirven para probar rigurosamente la hipótesis del agua.

El 19 de febrero, el Oportunity se enfocó en el Opportunity Ledge; un blanco específico en el afloramiento es la piedra conocida como El Capitán que se seleccionó para una intensa investigación. Las porciones superiores e inferior de la roca parecen diferir en cuanto a sus características. El Opportunity alcanzó El Capitán en el Sol 27 y obtuvo dos fotos con su cámara panorámica.

El Capitán debe su nombre a una montaña en Texas, pero en Marte, tiene aproximadamente 1 dm de alto. Las porciones superiores e inferiores de El Capitán tienen texturas diferentes, y se espera que ambas zonas puedan proporcionar pistas sobre la escala de tiempo geológica de Marte. Dos días después de llegar, en el sol 29, los científicos encontraron en la roca “El Capitán” marcas que podrían significar la prueba de la existencia en un pasado de agua. En el Sol 30, el Opportunity usó por primera vez el RAT para investigar las rocas cercanas a El Capitán. La herramienta RAT (“Rock Abrasion Tools”) o instrumento de abrasión de roca, se encarga de hacer agujeros en las rocas marcianas.

El Opportunity excava una zanja

Durante el Sol 23 (el 16 de febrero de 2004), Opportunity abrió con éxito zanjas en la tierra en Hematite Slope y empezó a investigar los detalles del subsuelo. El robot apartó la tierra alternadamente hacia adelante y hacia atrás fuera de la zanja con su rueda delantera mientras las otras ruedas mantenían al robot en su sitio. El robot giró un poco alternativamente a derecha e izquierda para ensanchar el agujero. El proceso duró 22 minutos. La zanja resultante tiene aproximadamente 5 dm × 1 dm de profundidad. Dos rasgos que llamaron la atención de los científicos son la textura grumosa de la tierra en la pared superior de la zanja y el brillo del suelo en la parte honda de la zanja.

Inspeccionando los lados y el suelo de la zanja, notaron que las esférulas son más brillantes y el polvo está formado por un grano tan fino que el microscopio del robot no puede detallar las partículas individuales que lo componen, indicando que lo que hay debajo es diferente a lo que está en la superficie.

Evidencias de agua

Durante la conferencia de prensa del 2 de marzo de 2004 los científicos de la misión hablaron de sus conclusiones sobre las evidencias de la presencia de agua líquida durante la formación de las rocas en el lugar de amartizaje del Opportunity.

Steven Squyres dijo:[cita requerida] “El agua líquida fluyó alguna vez por estas rocas; cambió su textura, cambió su química y ahora hemos sido capaces de leer las huellas que dejó”. No se sabe si por allí hubo un lago, un mar o simplemente fluía un río. Pero advirtió que con los datos que se tienen se ignora cuando ocurrió, no se sabe la extensión de los mares u océanos, ni su duración. Para James Garvin, responsable del programa: “Hemos enviado dos robots a Marte para averiguar si en algún momento, gracias al agua, hubo un entorno adecuado para la vida. Ahora tenemos serios indicios de que sí.” En los hallazgos han sido claves los espectrómetros alemanes de partículas alfa y el Mossbauer, que es capaz de determinar no los elemeOpportunity5ntos presentes en una roca sino los minerales. Los científicos presentaron el razonamiento siguiente para explicar las pequeñas marcas tubulares como huecos en las rocas, visibles en la superficie y después de taladrar dentro de ellas. Los geólogos las asocian en la Tierra a lugares donde se han formado cristales de sal en rocas sumergidas en agua. Después cuando a través de los procesos erosivos, o disueltas en agua menos salada los cristales desaparecen, quedan las marcas. Algunos de los rasgos son consistentes con ciertos tipos de cristales de minerales de sulfato.

Steven Squyres dijo[cita requerida] que hay tres líneas analíticas de los datos, y aunque no están seguros del todo la combinación de ellas, refuerza la conclusión del agua líquida:

  1. Las esférulas podrían tener un origen volcánico, haberse formado por gotas solidificadas tras un impacto meteórico, o ser concreciones minerales acumuladas en las rocas por contacto de la roca con una solución acuosa. El hecho de que dichas esférulas no estén distribuidas en capas en la roca sino aleatoriamente descarta las primeras dos posibilidades.
  2. El descubrimiento en la roca de minúsculas marcas tubulares. Estas cavidades tienen un centímetro de longitud y 2,5 mm de ancho y pocos mm de profundidad y los geólogos las asocian en la Tierra a lugares donde se han formado cristales de sal en rocas sumergidas en agua. Después cuando a través de los procesos erosivos, o disueltas en agua menos salada los cristales desaparecen, quedan las pequeñas marcas.
  3. La composición de las rocas analizadas muestra una alta concentración en sales de azufre. En ‘El Capitán’ se han encontrado una alta concentración de magnesio, hierro y sales sulfatadas. También se han encontrado sales de cloruros y bromuros.

Otro punto importante que apunta en la misma dirección del agua líquida, son las capas que se aprecian en las fotos tomadas por el Opportunity en las paredes del cráter, explicó John Grotzynger, geólogo del Instituto Tecnológico de Massachusetts. Estas capas pueden deberse a la acción del agua o del viento aunque los científicos se inclinan por la primera hipótesis.

El antiguo mar marcianoOpportunity6

Tres semanas después de que los científicos anunciaran que en la zona donde aterrizó el robot Opportunity, las rocas se habían formado en presencia de agua, tales como el azufre. El 23 de marzo de 2004, la NASA anunció que ellos creen que el Opportunity no había aterrizado sólo en una zona “mojada por el agua”, sino en lo que fue una vez una zona costera. “Pensamos que el Opportunity se halla ahora en lo que fue alguna vez la línea de la costa de un mar salado en Marte”, dijo Dr. Steve Squyres de la Universidad de Cornell.[cita requerida]

Para llegar a esta conclusión han tomado 150 imágenes microscópicas de una roca y han formado un mosaico y han detectado la presencia de finas capas con características típicas de la erosión causada por ondas de agua similares a las olas de un mar o un lago. Los modelos indican que los granos de arena -clasificados según tamaño de sedimento- se formó por lo menos en una zona con un oleaje del agua de unos cinco cm de profundidad, aunque posiblemente más profundo, y fluyendo a una velocidad de 1 a 5 dm/s“, dijo Dr. John Grotzinger, del MIT. El sitio del aterrizaje era probablemente un suelo de sal en el borde de una masa grande de agua y que se cubrió por agua poco profunda. Para Steven Squyres, Opportunity está estacionado en lo que una vez fue la orilla de un mar salado”. Se estima la profundidad en 5 cm por lo menos.

Le cratère Victoria qu’a exploré le robot Opportunity (crédit : NASA/JPL/UA)

Otra evidencia incluye los resultados del cloro y bromo en las rocas que indican que éstas, después de formarse, se empaparon en un agua rica en minerales, posiblemente de fuentes subterráneas. El mayor convencimiento tras los resultados del bromo, las partículas se precipitaron del agua a la superficie de las rocas cuando la concentración de sal subió por encima de la saturación cuando el agua estaba evaporándose.

Un nuevo estudio realizado por la Universidad de Colorado, en Boulder por Thomas Mc Collom y Brian M. Hynek y publicado en la revista Nature en diciembre de 2005, cuestionan seriamente la interpretación dada en 2004 y creen que el pasado puede no haber sido tan húmedo. Proponen que las huellas químicas en el lecho de roca interpretado como un lago salado en Meridiani Planum puede haber sido creada, en cambio, por la reacción generada por las corrientes de vapor de sulfuro moviéndose a través de los depósitos de ceniza volcánica. Este proceso exigiría la presencia de poca agua y durante poco tiempo. La región podría ser más parecida geológicamente a las regiones volcánicas como Yellowstone en América del Norte, Hawaii o Europa, que al Gran Lago Salado. Esta hipótesis plantea un ambiente mucho menos propicio a la actividad biológica en Marte que la hipótesis del Dr. Steve Squyres de 2004 a poco de aterrizar el Opportunity.

Primer perfil de temperatura atmosférica

Durante una conferencia de prensa del 11 de marzo de 2004, los científicos de la misión presentaron el primer perfil de temperatura de la atmósfera marciana. Se obtuvo combinando datos tomados del Mini-TES del Opportunity con los datos del TES a bordo del orbiter Mars Global Surveyor. Esto era necesario porque el Opportunity sólo puede medir hasta los 6 km de altura, y la cámara de MGS no puede medir los datos más cercanos a la superficie. Los datos fueron tomados el 15 de febrero (Sol 22) y se distinguen dos juegos de datos: Como el orbiter está en movimiento, algunos datos fueron tomados mientras estaba acercándose al lugar donde estaba el Opportunity y otros cuando se estaba alejando. En el gráfico, Opportunity2estos juegos están marcados “entrante” (color negro) y “saliente” (color rojo). También, los puntos representan los datos del Mini-TES (= robot) y las líneas rectas son los datos del TES (= el orbiter)

El Cráter Endurance

Vista de Burns Cliff dentro del cráter Endurance.

El 20 de marzo de 2004 Bethany Ehlmann de la Universidad de Washington, anunció que el robot probablemente saldría del cráter Eagle en Meridiani Planum dentro de tres días. No ha salido hasta ahora porque dentro del cráter ha encontrado rocas y sedimentos de suficiente interés para los geólogos. Cuando salga avanzará (de 50 a 100 m diarios) mucho más rápidamente que el Spirit porque a diferencia del cráter Gusev, esta zona es muy llana y con pocas rocas.

El 22 de marzo de 2004 el robot Opportunity salió del cráter Eagle tras el fallido intento del día anterior. La superficie del cráter es arenosa y muy resbaladiza. El robot se dirige al cráter Endurance mucho mayor y que se encuentra a 250 m de distancia. El 30 de abril de 2004, Opportunity alcanzó el cráter Endurance, un cráter de 30 m de diámetro. Durante el mes de mayo el robot se movió alrededor del cráter para explorar todas sus áreas. Esto incluyó las observaciones con Mini-TES y la cámara panorámica. Además, se investigó estrechamente, ‘la Piedra del León’ y se encontró que era similar en composición a las capas encontradas en el cráter del Águila. El 4 de junio de 2004 los miembros de la misión anunciaron su intención de llevar al Opportunity dentro del cráter Endurance, aun cuando puede resultar imposible que vuelva a salir. El blanco de este paseo es una capa de la roca cerca de ‘Karatepe’ región en que se localizan capas similares a las del cráter del Águila. Un primer intento de entrar en el cráter se hizo el 8 de junio pero el Opportunity abortó la maniobra ese mismo día. Las capas de roca expuestas dentro del cráter pueden aportar información significativa sobre la historia de un entorno de agua en el pasado.Opportunity7

Se halló que el ángulo de la superficie estaba bien dentro del margen de seguridad (aproximadamente 18 grados), y empezó la incursión al ‘Karatepe’. Durante los soles 134 el [12 de junio), 135, y 137 que el robot penetró más y más profundamente en el cráter, ejecutando el paseo como estaba planeado. El cráter fue investigado desde junio a diciembre de 2004.

Estos comentarios, y una descripción más exhaustiva de la misión, se pueden encontrar en:

https://es.wikipedia.org/wiki/Opportunity

El robot alcanzó los 42,195 Km en 11 años y dos meses de recorrido, siendo la primera máquina creada por el hombre que logra tal distancia.

Luego de 11 años y dos meses, el robot Opportunity de la NASA se convirtió en la primera máquina creada por el hombre en lograr 42,195 Km de recorrido, la distancia equivalente a una maratón fuera de la Tierra.

Recordemos que el rover Opportunity aterrizó en Marte en enero de 2004, y el robot hermano mayor el Curiosity, que llegó al planeta ocho años más tarde, en agosto de 2012. Spirit, un tercer aparato de la NASA, también llegó al planeta en enero de 2014, pero ha estado inactivo desde 2010.Opportunity9

Curiosity

La Mars Science Laboratory (abreviada MSL), conocida como Curiosity,2 3 del inglés ‘curiosidad’, es una misión espacial que incluye un astromóvil de exploración marciana dirigida por la NASA. Programada en un principio para ser lanzada el 8 de octubre de 2009 y efectuar un descenso de precisión sobre la superficie del planeta en 2010 entre los meseCuriosity1s de julio y septiembre,4 5 fue finalmente lanzado el 26 de noviembre de 2011 a las 10:02 am EST, y aterrizó en Marte exitosamente en el cráter Gale el 6 de agosto de 2012, aproximadamente a las 05:31 UTC enviando sus primeras imágenes a la Tierra.6

Lugar de descenso del vehículo rover Curiosity (marcado en color amarillo) en el cráter Gale, sobre la superficie de Marte.

La misión7 se centra en situar soCuriosity2bre la superficie marciana un vehículo explorador (tipo rover). Este vehículo es tres veces más pesado y dos veces más grande que los vehículos utilizados en la misión Mars Exploration Rover, que aterrizaron en el año 2004. Este vehículo lleva instrumentos científicos más avanzados que los de las otras misiones anteriores dirigidas a Marte, algunos de ellos proporcionados por la comunidad internacional. El vehículo se lanzó mediante un cohete Atlas V 541. Una vez en el planeta, el rover tomó fotos para mostrar que aterrizó con éxito. En el transcurso de su misión tomará docenas de muestras de suelo y polvo rocoso marciano para su análisis. La duración prevista de la misión es de 1 año marciano (1,88 años terrestres). Con un radio de exploración mayor a los de los vehículos enviados anteriormente, investigará la capacidad pasada y presente de Marte para alojar vida.

ObjetivosCuriosity4

El MSL tiene cuatro objetivos: Determinar si existió vida alguna vez en Marte, caracterizar el clima de Marte, determinar su geología y prepararse para la exploración humana de Marte. Para contribuir a estos cuatro objetivos científicos y conocer el objetivo principal (establecer la habitabilidad de Marte) el MSL tiene ocho cometidos:

Evaluación de los procesos biológicos:

  • 1.º Determinar la naturaleza y clasificación de los componentes orgánicos del carbono.
  • 2.º Hacer un inventario de los principales componentes que permiten la vida: carbono, hidrógeno, nitrógeno, oxígeno, fósforo y azufre.
  • 3.º Identificar las características que representan los efectos de los procesos biológicos.

Objetivos geológicos y geoquímicos:Curiosity9

  • 4.º Investigar la composición química, isotópica y mineral de la superficie marciana.
  • 5.º Interpretar el proceso de formación y erosión de las rocas y del suelo.

Evaluación de los procesos planetarios:Curiosity5

  • 6.º Evaluar la escala de tiempo de los procesos de evolución atmosféricos.
  • 7.º Determinar el estado presente, los ciclos y distribución del agua y del dióxido de carbono.

Evaluación de la radiación en superficie:

Especificaciones

Se esperaba que el vehículo rover tuviera un peso de 899 kilogramos incluyendo 80 kilogramos en instrumentos y equipo de análisis científico, en comparación a los usados en la Mars Exploration Rover cuyo peso es de 185 kg, incluyendo 5 kg de equipo en instrumental científico. Con una longitud de 2,7 m la misión MSL será capaz de superar obstáculos de una altura de 75 cm y la velocidad máxima de desplazamiento sobre terreno está estimada en 90 metros/hora con navegación automática, sin embargo se espera que la velocidad promedio de desplazamiento sea de 30 metros/hora considerando variables como dificultad del terreno, deslizamiento y visibilidad. Las expectativas contemplan que el vehículo recorra un mínimo de 19 km durante dos años terrestres.

Fuente de energía

El Mars Science Laboratory utiliza un “Generador termoeléctrico de radioisótopos” (RTG) fabricado por Boeing; este generador consiste en una cápsula que contiene radioisótopos de plutonio-238 y el calor generado por éste es convertido en electricidad por medio de un termopar,8 produciendo así 2.5 kilovatios-hora por día.9 Aunque la misión está programada para durar aproximadamente dos años, el generador RTG tendrá una vida mínima de catorce años.

Carga útil de instrumentos propuesta

Actualmente se han elegido 12 instrumentos para el desarrollo de la misión:

Instrumentación para el ingreso, descenso y aterrizaje (MEDLI)

El objetivo del módulo MEDLI es medir la densidad de la atmósfera exterior, así como la temperatura y función del escudo térmico de la sonda durante su ingreso a la atmósfera marciana. Los datos obtenidos serán utilizados para entender y describir mejor la atmósfera marciana y ajustar los márgenes de diseño y procedimientos de entrada requeridos para las sondas futuras.

Espectacular imagCuriosity8en muestra el camino recorrido por el rover Curiosity.

Sistema de aterrizaje

Se utilizó una técniCuriosity3ca de guiado atmosférico, que es la misma que utilizó el Apolo 11 en su visita a la Luna. La nave entró por guiado balístico al planeta. Luego, con retrocohetes, se cambió el ángulo de trayectoria se modificó la entrada atmosférica. Se produjo entonces una fuerza de sustentación para el guiado final del vehículo que permitió controlar la dirección de la nave y así achicar la zona de descenso. Es entonces que se pasó a la etapa del paracaídas.20

La última etapa de descenso comenzó a los 1800 metros, a una velocidad de 300 kilómetros por hora. Se encendieron los retrocohetes de la estructura del robot después de que el sistema de navegación detectase que éste se separó del paracaídas. No se optó la técnica de las bolsas de aire utilizadas en 2004 con Spirit y Opportunity pues hubiera rebotado unos dos kilómetros, muy lejos del lugar ideal que se había planificado aterrizar. Se pensó en aterrizar con patas, como hicieron los astronautas en la Luna, pero se hubiese quedado a un metro de altura, lo que hubiese hecho difícil bajar de allí. Por otra parte las rampas metálicas o de aire no hubiesen tenido lugar dentro de la nave espacial. Además las patas pueden apoyarse sobre rocas o depresiones profundas y puede ser difícil salir luego de allí.20

Se buscó entonces la alternativa innovadora del descenso con paracaídas y una grúa con retrocohetes. Este sistema de descenso es llamado Skycrane. A los 23 metros de altura la grúa descendió el vehículo con cables lo que permitió aterrizar en terrenos accidentados, con las ruedas ya en el terreno listo para moverse.20

Autorretrato de octubre de 2012 hecho por el Curiosity en Marte de sí mismo. La imagen es una serie de 55 fotografías de alta resolución posteriormente unidas

Curiosity6Algunas (de entre varias) formaciones rocosas “curiosas”, fotografiadas por el vehículo.

Curiosity7

Yutu

El robot chino ‘Yutu’ se despide desde la Luna

El vehículo iba a funcionar tres meses, pero ha sufrido un grave fallo técnico

Alicia Rivera Madrid 27 ENE 2014 – 14:37 CET156Yutu1

Yutu (en chino 玉兔, en español: Conejo de Jade) es un vehículo lunar de 1,5 m de largo, con un peso de 120 kg diseñados para explorar la superficie de la Luna durante unos tres meses, como parte de la misión Chang’e 3.1

Yutu (chino: 玉兔; pinyin: Yutu; literalmente: “Conejo de Jade”) es un no tripulado vehículo lunar que formó parte de la china Chang’e 3 misión a la Luna. Fue lanzado a las 17:30 UTC del 1 de diciembre de 2013, y llegó a la superficie de la Luna el 14 de diciembre de 2013. [6] La misión marca el primer aterrizaje suave en la Luna desde 1976 y el primer rover para operar allí desde el soviético Lunokhod 2 operaciones cesaron el 11 de mayo de 1973. [7]

El rover encontró dificultades operativas después de la primera noche lunar de 14 días (después de un mes en la Luna), y era incapaz de moverse después del final de la segunda noche lunar, aunque continuó para reunir información útil para algunos meses después. [8] En octubre de 2015, Yutu estableció el récord para el periodo operativo más largo para un rover en la Luna. [9]

El rover lunar Yutu fue desarrollado por el Instituto de Shanghai Aeroespacial Ingeniería de Sistemas (SASEI) y el Instituto de Beijing de la nave espacial de Ingeniería de Sistemas (Bisse). El desarrollo del rover de seis ruedas se inició en 2002 y se terminó en mayo de 2010. [10] [11] [12] El rover desplegado desde el módulo de aterrizaje y exploraron la superficie lunar en forma independiente. El nombre del rover fue seleccionado en una encuesta en línea, y es una referencia al conejo mascota de Chang’e, la diosa de la Luna en la mitología china. [12]

El objetivo oficial de la misión era lograr primero aterrizaje suave de China y la exploración itinerante en la Luna, así como para demostrar y desarrollar tecnologías clave para futuras misiones. [13]

Los objetivos científicos de Chang’e-3 incluyen principalmente la topografía lunar superficial y estudio geológico, la composición material de la superficie lunar y encuesta de recursos, detección entorno espacial Sol-Tierra-Luna, y la observación astronómica a base lunar. [13] Chang’e 3 realizaron la primera medición directa de la estructura y la profundidad del suelo lunar hasta una profundidad de 30 m Yutu3(98 pies), y se investigó la estructura de la corteza lunar hasta varios cientos de metros de profundidad. [14]

A diferencia de la NASA y la ESA, la Administración Espacial Nacional de China revela poco sobre sus misiones a la información pública, Yutu2por lo detallada sobre Chang’e 3 es limitada. Aspectos de diseño de Yutu y varios de sus experimentos pueden haber sido sobre la base de la NASA Mars Exploration Rovers. [15] [16] Se cree que su diseño de la rueda de haber sido influenciado considerablemente por lo que se utilizó en el ruso Lunokhod 1 rover. [16]

El rover Yutu tiene una masa de 140 kg (310 libras), con una capacidad de carga de 20 kg (44 lb). [1] [2] [17] Es más pequeño que los Mars Exploration Rovers, Spirit y Opportunity, y lleva instrumentos similares: cámaras panorámicas, un espectrómetro infrarrojo y un espectrómetro de rayos X de partículas alfa. (APXS) [7] [18] Yutu también está equipado con un brazo robótico para colocar sus APXS cerca de una muestra diana. Además, el vehículo puede transmitir video en vivo, y tiene sensores automáticos para evitar que chocar con otros objetos.

Yutu fue diseñado para explorar un área de 3 kilómetros cuadrados (1,2 millas cuadradas) durante su misión de tres meses, con una distancia máxima de desplazamiento de 10 km (6,2 millas). La energía es proporcionada por dos paneles solares, permitiendo que el vehículo funcione a través de días lunares. Durante las noches lunares de 14 días, el rover entra en modo de reposo, [19] en el que la calefacción es pYutu4roporcionada por los calefactores de radioisótopos (RHU) utilizando plutonio-238 [20] circuitos de fluido y dos de fase. [13]

Chang’e 3 aterrizó el 14 de diciembre de 2013 y desplegó el rover Yutu 7 horas 24 minutos más tarde. [24]

El lugar de aterrizaje previsto se anunció que Sinus Iridum. [25] Sin embargo, el módulo de aterrizaje descendió en Mare Imbrium, a unos 40 km (25 millas) al sur de los 6 km (3,7 millas) de diámetro Laplace F cráter, [26] [27] en 44.1214 ° N, 19.5116 ° W (2.640 m de altitud) [28]

Mientras los observadores aficionados fueron incapaces de detectar las transmisiones desde el módulo de aterrizaje, las autoridades chinas informaron que la nave todavía estaba operando su cámara UV y del telescopio, ya que entró en su décimo cuarta noche lunar el 14 de enero de 2015. [51] [52] El 18 de abril de 2014, Wang Jianyu, subsecretario general de la Sociedad China de Investigación Espacial afirmó que el fracaso no era mecánico, pero si eléctrico, y que estaban buscando para prescindir de ella. Además, explicó, “La temperatura en la Luna es considerablemente inferior a nuestra estimación anterior, y agregó que” algunos componentes pueden estar sufriendo de “congelación”. [53] Durante 15 de abril de la misión Chang’e 3, incluyendo su rover Yutu, testigos de un eclipse total de Sol por la Tierra desde la superficie de la Luna. [54]Yutu5

Yutu era incapaz de mover sus paneles solares de vuelta a la posición de aislamiento durante las noches lunares, dejando al descubierto las interioridades al frío nocturno. Con cada noche, alguna capacidad se perdió, [55] pero superó su vida útil de tres meses. [56] Los instrumentos científicos pueden haber funcionado, pero los datos científicos posteriores quedó muy limitado como el espectrómetro NIR y el radar de penetración terrestre eran limita a hacer siempre la misma observación. Control de la Misión previsto seguir utilizando la Yutu hasta que se detuvo por completo de trabajo, ya que proporcionaría datos valiosos sobre la resistencia de sus componentes. [56]

El rover sigue intermitente transmitiendo a partir de octubre 2015 [52] [57] [58] [59] [60] [61] [62] [63] [64] A finales de octubre de 2015, Yutu había establecido el récord de el más largo período operacional de un rover en la Luna, aunque la mayor parte de su tiempo lo pasó inmóvil. [65]

Imagen del vehículo rodante ‘Yutu’ en el suelo lunar tomada por el módulo descenso de la misión Chang 3E el 17 de diciembre. / CASC/ Ministerio de Defensa chinoYutu6

El robot rodante chino Yutu, que llegó al suelo lunar hace un  mes y medio, parece que ha terminado su misión debido a una avería. Estaba previsto que funcionase tres meses. “Los jefes están trabajando contra reloj. Pese a ello, sé que puedo no superar esta noche lunar”. Con este mensaje, simulando que es el propio Yutu el que se despide desde la Luna, presentó la situación la agencia oficial china Xinhua. “Si esta misión se suspende antes de lo previsto, no tengo miedo; no importa si pueden arreglarme o no, creo que he proporcionado a los jefes mucha información valiosa y experiencia”, continúa, supuestamente, el mensaje final del robot que recogió ayer el South China Morning Post. “No estoy tan mal… como otros héroes en otras historias, he tenido algunos problemas en mi aventura”. Xinhua recuerda que la mitad de las misiones lunares han fallado de alguna manera.

Lo que no han explicado los responsables de la misión ni las autoridades chinas es qué le ha pasado exactamente al Yutu, aludiendo a un vago “problema por las complicadas condiciones en la superficie lunar”. El Diario del Pueblo, periódico oficial del Gobierno chino, informó ayer del fallo del robot indicando que no podría despertarse más, según recogió Europa Press. El robot entró a finales de la semana pasada en su segundo período dYutu8e hibernación para soportar las bajas temperaturas y la oscuridad de la prolongada noche lunar, que dura dos semanas terrestres.

El Yutu, el vehículo rodante de la misión Chang 3E, llegó a la luna el pasado 14 de diciembre en el módulo de descenso que convirtió a China en la tercera potencia en lograr un aterrizaje controlado en el satélite natural terrestre, tras la antigua Unión Soviética y EE UU. La misión se inscribe el plan de exploración que China puso en marcha con dos sondas orbitales en la Luna (en 2007 y 2011) y que debe continuar ahora con una nave que traiga muestran lunares a la Tierra. Será hacia 2017. El plan es que tres años después, hacia 2020, los taikonautas chinos repitan la hazaña de los astronautas de la NASA que pisaron la Luna.

De momento la atención está centrada en el Yutu. El problema se detectó en el vehículo justo antes de que entrar en la segunda hibernación al producirse un problema mecánico, según informó el South China MYutu7orning Post, citando también la opinión de un experto europeo acerca del fallo: puede que un problema de los motores eléctricos haya impedido el plegado de los paneles solares, y entonces los componentes electrónicos internos del vehículo no estarían protegidos contra el frío extremo de la noche lunar y se estropearían. Tal vez el polvo ha bloqueado el mecanismo de cerrado.

Un día lunar dura unos 28 días terrestres: dos semanas de luz diurna y dos semanas de noche con 173 grados centígrados bajo cero, frente a los 100 grados sobre cero de día. Para el suministro de energía, tanto el Yutu como el módulo de descenso llevan paneles solares y un generador de radioisótopos. El módulo se puso en hibernación para pasar su segunda noche lunar el pasado viernes, y el Yutu lo hizo el sábado, cuando surgieron los problemas técnicos.

En el mes y medio que lleva en la Luna, la Chang 3E se ha apuntado triunfos muy notables, incluido el mismo aterrizaje controlado, el despliegue del Yutu, sus 100 metros recorridos por el suelo allí, la toma de muestras con el brazo robótico y los primeros análisis de minerales, así como las imágenes tomadas del entorno lunar y de la Tierra vista desde allí, ha informado Space.com.

LRO primer plano la imagen tomada el 25 de diciembre de 2013. El módulo de aterrizaje (flecha grande) y el rover (flecha pequeña) se puede ver.

Estado de la misión:

  • 7 de marzo de 2014: cámara LROC / NAC (Lunar Reconnaissance Orbiter Camera / Narrow Angle Camera) a bordo de la misión de la NASA (Lunar Reconnaissance Orbiter) que capturó espectaculares nuevas imágenes que detallan la travesía del Yutu Moon Rover de China alrededor del lugar de aterrizaje durante sus primeros dos meses. Explorando el terreno gris pockmarked de la Luna. 5)

Las imágenes LRO de alta resolución recién lanzadas incluso muestran las huellas de Yutu cortando la superficie lunar mientras el famoso robot chino conducía en sentido horario alrededor del módulo de aterrizaje Chang’e-3 que lo entregó al suelo a mediados de diciembre de 2013.

Figura 7: Yutu rover conduce alrededor del módulo de aterrizaje Chang’e-3 – desde arriba y desde abajo (imagen de crédito: CNSA, NASA, Ken Kremer, Marco Di Lorenzo, Mark Robinson)

Leyenda de la Figura 7 : La imagen es una vista compuesta del Yutu rover de China y las pistas se mueven en sentido horario alrededor del vertedero Chang’e-3 desde arriba y abajo (órbita y superficie). El panorama del color del dispositivo de aterrizaje Chang’e-3 (parte inferior) y la vista orbital (parte superior) del orbitador LRO de la NASA muestra al Yutu rover después de que bajó por la rampa hacia la superficie de la luna y comenzó a conducir por el lado derecho hacia el sur en Lunar Día 1. Luego se movió hacia el noroeste durante el Día Lunar 2. Las flechas muestran las posiciones de Yutu a lo largo del tiempo.

  • 3 de marzo. 2014: Yutu sufrió una falla en el circuito de control en su unidad de conducción que impidió que Yutu ingresara a la segunda latencia según lo previsto. Se requiere un circuito de control que funcione para bajar el mástil de los rovers y proteger los delicados componentes e instrumentos montados en el mástil para que no sufran el frío extremadamente intenso de los periodos nocturnos recurrentes de la Luna. La antena de comunicaciones de alta ganancia y las cámaras de imagen están conectadas al mástil. Deben ser plegados en una caja electrónica calentada para protegerlos de los efectos dañinos de la caída de la noche de la Luna cuando las temperaturas caen dramáticamente por debajo de -180ºC. 6)
  • El 22 de febrero de 2014, el Yutu lunar rover entró en su tercer período de hibernación nocturna lunar, pero persisten graves problemas técnicos confirmados por los administradores del espacio chinos. Xinhua, la agencia de noticias oficial del gobierno de China informó que los problemas de control mecánico no se han resuelto, lo que podría paralizar el vehículo. 7)
  • 13 de febrero de 2014: el problemático vehículo lunar Yutu de China ha sobrevivido a una noche lunar de 14 días, muy fría, lo que genera esperanzas de que pueda ser reparada luego de un mal funcionamiento el mes pasado. 8) 9)
  • 26 de enero de 2014: Yutu acaba de sufrir un importante contratiempo mecánico al comienzo de su segunda noche lunar, según un anuncio oficial de los funcionarios espaciales chinos hecho público este fin de semana. Yutu ha “experimentado una anormalidad en el control mecánico” en un nuevo informe del periódico oficial del gobierno de China, The People’s Daily. 10)

– Yutu estaba avanzando hacia el sur desde el lugar de aterrizaje, ya que el incidente ocurrió hace unos días, aproximadamente seis semanas después de su planeada expedición de luna de miel de 3 meses. Sin embargo, muy pocos detalles han surgido o han sido revelados por el gobierno chino sobre la condición o el destino de Yutu.

  • 13 de enero. 2014: con el día lunar comenzando de nuevo en el lugar de aterrizaje de Chang’e-3, Yutu se despertó el 11 de enero, mientras que el aterrizador se despertó el 12 de enero de 2014 según BACC. Ambos vehículos dependen de su vida, lo que permite que los paneles solares produzcan energía para funcionar y realizar sus tareas científicas. 11)

– Durante la pausa nocturna, fueron mantenidos con vida por una fuente de calor radioisotópica que mantuvo sus delicados subsistemas electrónicos y de computadoras dentro de una caja debajo de la cubierta. Se mantuvo a una temperatura de menos 40 grados Celsius para evitar daños debilitantes. Durante la noche lunar, el módulo de aterrizaje y el rover estaban en condición de apagado y la comunicación con la Tierra también se cortó.

– Ahora, con el amanecer de la luz del día, los paneles solares se desplegaron y los instrumentos se activaron en ambos robots. Yutu ya ha vuelto a vagar hacia un terreno lunar inexplorado e inexplorado que rodea la zona de aterrizaje en Mare Imbrium, cerca de la Bahía de Rainbows o la región del Sinus Iridum.

  • 26 de diciembre de 2013: el vehículo lunar y el módulo de aterrizaje de la misión de la sonda lunar Chang’e-3 de China se “dormirán” durante la noche lunar, soportando temperaturas extremadamente bajas en la superficie lunar. Se espera que la noche lunar comience el 26 de diciembre y dure aproximadamente dos semanas. Durante su “reposo”, tanto el módulo de aterrizaje como el móvil deberán tolerar temperaturas de -180ºC. 12)
  • El 25 de diciembre de 2013, el LRO (Lunar Reconnaissance Orbiter) de la NASA estaba en posición de adquirir la imagen (Figura 8 ), mostrando el módulo de aterrizaje y el rover “Jade Rabbit” de 120 kg en su ubicación cerca de la región Sinus Iridum de la Luna. El ancho de barrido de la imagen NAC (cámara de ángulo estrecho) es de 576 m; el norte esta arriba LRO estaba a unos 150 km del sitio de Chang’e-3 cuando se adquirió la imagen. 13)

  • 22 de diciembre de 2013: el módulo de aterrizaje lunar Chang’e-3 de China obtuvo la primera vista panorámica de la misión del lugar de toma de contacto en Mare Imbrium. Los funcionarios espaciales chinos ahora han publicado las imágenes de superficie capturadas por la nave nodriza Chang’e-3 el 15 de diciembre, a través de un video de noticias sobre CCTV. 14)

Figura 9: Parte del primer panorama alrededor del sitio de aterrizaje de Chang’e-3 después de que el Yutu Rover de China llegó a la superficie de la Luna el 15 de diciembre de 2013 (crédito de la imagen: CNSA, CCTV)

  • 20 de diciembre de 2013: las coordenadas de aterrizaje exactas de Chang’e-3 fueron 44.1260ºN y 19.5014ºW, ubicadas debajo de la cordillera de Montes Recti y aproximadamente 40 km al sur del cráter de 6 km de diámetro conocido como Laplace F. 15)

Figura 10: La infografía muestra el proceso del aterrizaje suave en la luna de la sonda lunar china Chang’e-3 el 14 de diciembre de 2013 (crédito de imagen: SASTIND, Xinhua, Zheng Yue)

  • El 14 de diciembre de 2013 (20:35 UTC), el primer vehículo lunar de China, Yutu (Conejo de Jade), rodó sobre el suelo de la luna, aproximadamente 7 horas después de que la nave nodriza Chang’e-3 aterrizara sobre las llanuras llenas de lava. de la bahía de arco iris. 16) 17) 18) 19)

Figura 11: foto del rover Yutu tomada por el módulo de aterrizaje Chang’e-3 en la Luna el 15 de diciembre de 2013 (crédito de imagen: BACC, CAS)

Leyenda de la figura 11: las ruedas del rover dejaron huellas notables de neumáticos mientras avanzaba por el suelo lunar suelto. El módulo de aterrizaje lunar Chang’e-3 y el rover devolvieron retratos de la otra parte de la superficie de la luna, que también mostraba con orgullo la brillante bandera nacional china de color rojo que brillaba sobre el Conejo de Jade cuando se encuentra en la superficie de la Luna. Las imágenes en color se transmitieron en vivo al BACC (Centro de Control Aeroespacial de Beijing), donde el presidente chino Xi Jinping y el primer ministro Li Keqiang vieron la transmisión.

El rover pasará unos tres meses explorando la superficie de la luna y buscando recursos naturales. Puede subir pendientes de hasta 30 º y viajar a 200 m / hora, según el Instituto de Investigación de Ingeniería de Sistemas Aeroespaciales de Shanghai.

– A pesar de los anuncios previos a la misión sobre un aterrizaje planeado en la “Bahía de Arco Iris” (Sinus Iridum en la nomenclatura latina aprobada de la Luna), la nave espacial se estableció en la región norte del “Mar de las Lluvias” (Mare Imbrium) , el extremo oriental de su caja de aterrizaje designada. Ya sea por diseño o por accidente fortuito, este sitio es en realidad más interesante geológicamente que el destino original de la nave espacial. 20)

La NASA hará un seguimiento del vehículo chino Yutu y del vehículo de aterrizaje cuando LRO (Lunar Reconnaissance Orbiter) orbite sobre el oeste de Mare Imbrium el 24 y 25 de diciembre.

Figura 12: Foto de la sonda Chang’e-3 tomada por el rover Yutu en la luna el 15 de diciembre de 2013 (crédito de imagen: BACC, CAS)

  • Chang’e-3 aterrizó en la luna el sábado 14 de diciembre de 2013 (13:11:18 UTC), transmitiendo fotogramas de video todo el camino hacia abajo. Esto convierte a China en la tercera nación del mundo en lograr un aterrizaje suave lunar. El aterrizaje, casi dos semanas después del despegue, fue el primero de su tipo desde la misión de la antigua Unión Soviética en 1976. El último aterrizaje lunar suave de la NASA se produjo en 1972, en la misión Apollo 17. 21) 22)

Figura 13: Foto de la superficie lunar adquirida el 14 de diciembre de 2013 durante el descenso del módulo de aterrizaje; la fotografía fue tomada por la cámara de a bordo de la sonda lunar y se mostró en la pantalla del BACC en Beijing (crédito de imagen: Xinhua) 23)

– La sonda aterrizó en una llanura de 400 km de ancho conocida como “Sinus Iridum”, o Bahía de los Arcoiris. Antes de aterrizar en la superficie lunar, la sonda se desaceleró de la periapsis (15 km sobre la superficie lunar), de una velocidad de 1,700 m / sy luego se mantuvo durante aproximadamente 20 segundos, utilizando sensores e imágenes 3D para identificar un área plana. Durante el descenso, la actitud de la sonda se controló mediante 28 pequeños propulsores.

– Los impulsores se desplegaron a unos 100 m por encima de la superficie lunar para guiar suavemente a la nave hacia su posición. El proceso de aterrizaje duró unos 12 minutos.

– Cuatro minutos después de aterrizar, el Chang’e-3 desplegó sus paneles solares para proporcionar energía al aterrizador y al rover.

– Chang’e-3 se basó en el autocontrol para las mediciones de descenso, rango y velocidad, encontrando el punto de aterrizaje adecuado y la caída libre.

  • El 10 de diciembre de 2013, Chang’e-3 entró en una órbita más cercana a la luna. Siguiendo los comandos enviados desde BACC, la sonda descendió desde la órbita lunar circular de 100 km a una órbita elíptica con su punto más cercano (periapsis) a unos 15 km de la superficie lunar y la apoapsis a 100 km. 24)
  • El 6 de diciembre de 2013, la sonda lunar Chang’-3 entró en la órbita lunar. Un ingeniero en el BACC (Centro de Control Aeroespacial de Beijing) ordenó a la sonda lunar Chang’e-3 que dispara sus propulsores de frenado durante 361 segundos, según la agencia de noticias Xinhua de China. La quema crítica del motor colocó a Chang’e-3 en su órbita circular deseada de 100 km de altura sobre la superficie de la luna. 25) 26)
  • La misión Chang’e-3 experimentó un vuelo sin problemas hacia la luna, con la nave espacial entrando en una órbita lunar reportada a 210.3 km x 389109.2 km con una inclinación de 28.5º. Se requirieron tres correcciones orbitales: la primera tuvo lugar a las 07:50 UTC del 2 de diciembre, seguida de una segunda a las 08:20 UTC del 3 de diciembre. 27)

Complemento de sensor del módulo de aterrizaje: (MastCam, cámara de descenso, LUT, EUV)

Los sistemas de control de la carga útil en ambos, el módulo de aterrizaje Chang’e-3 y el Yutu rover, están construidos por el Centro de Tecnología e Ingeniería para la Utilización del Espacio de CAS. 28) 29)

MastCam:

La MastCam fue desarrollada por la IOE (Instituto de Óptica y Electrónica) de CAS (Academia China de Ciencias). Ubicada en la parte superior del mástil del módulo de aterrizaje, la MastCam se utilizará para la adquisición de fotografías ópticas del área de aterrizaje, para estudiar el terreno y las características geológicas de la zona de aterrizaje. La cámara también monitoreará el movimiento del móvil en la superficie lunar con una capacidad de imágenes de múltiples colores. Puede tomar fotografías y videos, ajustar el enfoque automáticamente y tiene la capacidad de minimizar las luces dispersas y la compresión de la imagen. Sus principales sistemas son un sistema óptico y un sistema mecánico.

Cámara de descenso:

La cámara de descenso fue desarrollada por BISME (Instituto de Maquinaria y Electricidad Espacial de Beijing) de CAST (Academia China de Tecnología Espacial). Situada en la parte inferior del módulo de aterrizaje, la cámara de descenso realizará la adquisición de las fotografías ópticas del área de aterrizaje para estudiar el terreno y las características geológicas de la zona de aterrizaje en altitudes entre 4 y 2 km. Tiene un diseño altamente miniaturizado; Peso ligero, pequeño volumen, bajo consumo de energía y alto rendimiento. Puede soportar altos niveles de radiación, diferencia de temperatura y vibraciones violentas en el lanzamiento. La cámara utiliza un detector CMOS (1280 x 1024 píxeles) y también una compresión de imagen a escala de grises estática de alta velocidad. Tiene un enfoque automático. Sus principales sistemas son un sistema óptico y una caja eléctrica de recepción y procesamiento de imágenes.

Figura 14: Foto de la cámara de descenso (Crédito de la imagen: CLEP, Ref. 2)

LUT (telescopio ultravioleta de base lunar):

LUT fue desarrollado por NAOC / CAS (Observatorio Nacional de Astronomía de China / Academia China de Ciencias). La LUT hará uso de la ausencia de una atmósfera y la rotación lenta de la luna para observar objetos celestes y áreas del cielo seleccionados en la región ultravioleta cercana. El telescopio se coloca en el lado -Y del módulo de aterrizaje. Sus principales subsistemas son el cuerpo y el bastidor del telescopio, la lente reflectora y el soporte del telescopio, y los sistemas de control y montaje del cable eléctrico. Esta será la primera observación astronómica realizada desde la superficie de otros objetos planetarios durante períodos prolongados. La LUT está altamente automatizada y puede apuntar y apuntar a varios objetivos con el montaje del telescopio automáticamente. Su baja masa ligera se logró utilizando materiales compuestos y optimización de la estructura, y la LUT es altamente adaptable al entorno de la superficie lunar. Puede funcionar entre -20 y + 40ºC.

Figura 15: Foto de los subsistemas LUT: cuerpo del telescopio (izquierda) y plataforma de montaje con cardán de dos ejes (crédito de la imagen: CLEP, Ref. 2)

EUV (Extreme Ultraviolet Imager):

El Instituto de Óptica de Changchun, llamado CIOMP (Mecánica y Física Finas) de CAS, desarrolló el generador de imágenes EUV. Ubicada en la parte superior del módulo de aterrizaje, la EUV proporcionará imágenes de la ionosfera de la Tierra en la región ultravioleta extrema y realizará investigaciones sobre el pronóstico del clima espacial y los estudios de la ionosfera. Puede rastrear la Tierra automáticamente, realizando un monitoreo de imágenes a largo plazo de la radiación ultravioleta extrema dispersa de la ionosfera de la Tierra. La longitud de onda operativa es de 30.4 nm (aproximadamente 1/20 de luz visible) y el FOV (Campo de visión) es de 15º (la región cubre aproximadamente 7.5 diámetros de la Tierra). La EUV puede operar entre -25 y + 75º C y tiene la capacidad de sobrevivir y operar en el entorno térmico altamente variable de la superficie lunar. Esta es la primera cámara ultravioleta extrema que opera desde la superficie lunar. Sus subsistemas principales son el sistema de imágenes ópticas de ultra membrana ultravioleta extrema, el sensor de contador de fotones ultravioleta extremo, una unidad de procesamiento de señales, el sistema de control de apuntamiento y la unidad de control principal.

El objetivo de la cámara EUV es observar la plasmasfera de la Tierra. La plasmasfera se encuentra dentro de la magnetosfera de la Tierra y consiste en plasma de baja energía (baja temperatura) ubicado sobre la ionosfera. El límite exterior de la plasmasfera, la plasmapause, se caracteriza por una caída repentina en la densidad del plasma en el orden de una magnitud.

La plasmasfera se conoce por un movimiento de partículas relativamente bien organizado debido al campo geomagnético que hace que la plasmasfera co-gire con la Tierra. Sin embargo, las observaciones recientes de la plasmasfera apuntan a irregularidades de densidad causadas por varios procesos. Además, las observaciones recientes han demostrado que la plasmasfera no siempre co-gira.

Las observaciones de la plasmasfera son posibles mediante la detección de radiación solar dispersada por resonancia a 30.4 nm causada por iones plasmasféricos He + . He + es el segundo ión más abundante en la plasmasfera que alcanza hasta el 15% de la densidad plasmática total, de modo que las mediciones de los iones He + se pueden usar para medir las propiedades plasmasféricas generales, como la densidad y la temperatura.

Figura 16: Foto de la cámara de imágenes EUV (crédito de imagen: CLEP, Ref. 2)

El cabezal de la cámara se instala en la cubierta superior del Chang’e-3 mediante un mecanismo de orientación de inclinación y giro. El instrumento utiliza un sistema óptico de membrana múltiple y un detector de fotones EUV como detector. El estudio de la radiación de 30,4 nm de la luna le permite a Chang’e-3 observar la plasmasfera completa, incluida la plasmopausia y las plumas a escala global para examinar su estructura y dinámica. Las imágenes proporcionadas por el generador de imágenes EUV se someten a un algoritmo para crear modelos tridimensionales de la plasmasfera de la Tierra.

Complemento de sensor del móvil (Yutu): (PanCam, GPR, VNIS, APXS)

PanCam:

PanCam fue desarrollado por el Instituto Xian de Óptica y Mecánica de Precisión (OPT) de CAS. Ubicado en el mástil superior de Yutu, el objetivo de las PanCams es adquirir imágenes en 3D de la superficie lunar para estudiar el terreno, las características y estructuras geológicas y los cráteres dentro de la región objetivo. También controlará el estado operativo del módulo de aterrizaje.

Las PanCams utilizan un sistema óptico simplificado y un diseño altamente miniaturizado, lo que hace que la cámara sea de poca masa, tenga poco volumen, consuma poca energía y sea altamente confiable. Puede operar entre -25 y + 55ºC y puede sobrevivir entre -40 y + 75ºC. El enfoque de su sistema óptico es operativo entre 3m e infinito y tiene enfoque automático y manual, pudiendo ajustar automáticamente el brillo del campo. Sus subsistemas principales son los PanCams gemelos (A y B), cada uno con un sistema óptico, sistema mecánico, electrónica y partes de control térmico.

Figura 17: Foto de una PanCam (crédito de imagen: CLEP, Ref. 2)

GPR (Radar de penetración del suelo):

GPR fue desarrollado por el Instituto de Electrónica de CAS. El instrumento está montado en la parte inferior de Yutu. El objetivo del GPR es medir la profundidad del suelo lunar y la distribución estructural del suelo, el magma, los tubos de lava y las capas de roca debajo de la superficie. El GPR presenta dos canales: el canal I funciona a 60 MHz: para explorar las características geológicas de la sub-superficie hasta una resolución de nivel de metro con una profundidad máxima> 100 m; El canal II funciona a 500 MHz: para sondear la profundidad del suelo lunar con una resolución de más de 30 cm hasta una profundidad máxima de> 30 m. Las antenas pueden sobrevivir temperaturas de -200 a + 120ºC. GPR tiene un diseño miniaturizado, bajo consumo de energía, alto rendimiento. Sus principales subsistemas se componen de un controlador de radar, antenas y transmisores de canal I / II, cables eléctricos.

La determinación de la estructura de la sub-superficie a estas profundidades permite estudios de la historia geológica y térmica de la luna y evaluaciones de la cantidad de recursos potenciales para la futura exploración lunar.

Figura 18: Componentes GPR (de izquierda a derecha): transmisor de Canal I y Canal II, y antena de radar (crédito de la imagen: CLEP, Ref. 2)

VNIS (espectrómetro de imágenes VIS / NIR):

VNIS fue desarrollado por SITP / CAS (Instituto de Física Técnica de Shanghai). El objetivo de VNIS es realizar mediciones in situ de la composición y los recursos de la superficie lunar mediante imágenes y espectrometría en las longitudes de onda visibles e infrarrojas cercanas (rango espectral: 0,45-2,4 µm). Ubicada debajo de la plataforma superior del rover, emplea el concepto de espectrometría de luz y ultrasonido sintonizable impulsada por RF, utilizando generadores de ultrasonido de nuevo diseño. Este espectrómetro tiene una acumulación de antipolvo y funciones de calibración en órbita. Cuenta con un diseño miniaturizado con baja masa y alto rendimiento. Los subsistemas principales son el sistema óptico de espectrómetro de luz y ultrasonido sintonizable, guiado de objetivo por ultrasonido, repelente de polvo y componentes de control térmico, caja exterior compuesta, sistema de control principal y módulo de procesamiento de datos.

Figura 19: Vista esquemática del diseño del filtro VNIS AOTF (crédito de la imagen: Analytic Journal, Brimrose)

VNIS es un FOV de 6º x 6º para el espectro visible y un FOV de 3º x 3º para la banda NIR. El instrumento alcanza una resolución espectral inferior a 8 nm para la banda de 450-950 nm, y inferior a 12 nm para la banda de 900-2400 nm, utilizando una frecuencia de RF de 40 a 180 MHz sintonizable continuamente.

Figura 20: Foto del conjunto VNIS (crédito de la imagen: CLEP, Ref. 2)

APXS (espectrómetro de rayos X de partículas alfa):

APXS fue desarrollado por IHEP (Instituto de Física de Altas Energías) de CAS. El objetivo es medir la composición y distribución de varios elementos en la superficie lunar mediante la observación de los rayos X dispersos del bombardeo de partículas alfa en las rocas. Ubicado en el brazo robótico del rover, APXS es ​​capaz de dispersar partículas activas, determinación in situ de elementos de la superficie lunar, calibración en órbita y funciones de medición de distancia. El sensor puede recalibrarse a sí mismo mediante el uso de objetivos de calibración estándar, y la supervivencia lunar nocturna del rover contiene una RHU (Unidad de Calentador de Radioisótopos) para mantener el sensor caliente. Se utilizan sensores semiconductores de bajo consumo de energía, baja masa, alta resolución y alta sensibilidad.

Figura 21: Componentes APXS (de izquierda a derecha): cabezal del sensor, RHU y objetivo de calibración (crédito de la imagen: CLEP, Ref. 2)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mapa de la ruta de Yutu