Este Mundo, a veces insólito

Calendario
mayo 2024
L M X J V S D
 12345
6789101112
13141516171819
20212223242526
2728293031  

SDO

Rate this post

Solar Dynamics Observatory

Información general

Organización: NASA / Centro de vuelo espacial Goddard

Estado: Activo

Destino actual: Orbitalsdo1

Satélite de: Tierra

Fecha de lanzamiento: 11 de febrero de 2010 15:23:00 UTC

Vehículo de lanzamiento: Atlas V

Sitio de lanzamiento: Estación de la Fuerza Aérea de Cabo Cañaveral

Vida útil: 5 – 10 años

Aplicación: Estudiar el Sol

Masa: Carga útil: 290 kg; Combustible: 1400 kg; Total: 3100 kg

NSSDC ID: 2010-005A

Sitio web: http://sdo.gsfc.nasa.gov

Elementos orbitales

Tipo de órbita: Órbita geosíncrona

Longitud: 102° O

Inclinación: 28°

Equipamientosdo2

Instrumentos principales: Extreme Ultraviolet Variability Experiment / Helioseismic and Magnetic Imager / Atmospheric Imaging Assembly

Bandas espectrales: <.1 nm

Tasa de datos: 130 Mbps en la 26 GHz banda Ka; 150 million bits/segundo

El Solar Dynamics Observatory (SDO) es un telescopio espacial que fue lanzado el 11 de febrero de 2010 para estudiar el Sol. Es un proyecto de la NASA.

Duración de la misión

La fecha de lanzamiento fue el 11 de febrero de 2010 15:23:00 UTC. Actualmente la sonda espacial está en fase orbital. La misión debería durar cinco años y tres meses, pero no se excluye una prolongación de al menos diez años. Algunos consideran el Solar Dynamics Observatory (Observatorio Solar Dinámico) como el sucesor del Solar and Heliospheric Observatory (SOHO).

Características

El vehículo de lanzamiento del telescopio solar espacial fue un cohete desechable, el Atlas V. El sitio de lanzamiento fue desde el Complejo Espacial de Lanzamiento 41, en la Estación de la Fuerza Aérea de Cabo Cañaveral.

Telescopio solar espacial

El Solar Dynamics Observatory (SDO) es un telescopio espacial estabilizado en sus tres ejes con alineamiento solar y dos antenas de alta recepción.

Órbita del telescopio solar

El Solar Dynamics Observatory (SDO) orbita el planeta Tierra a unos 36.000 km, con el objeto de estudiar el Sol. El observatorio espacial tiene una órbita geosíncrona a 102º de latitud oeste y una inclinación de 28,5º.

Comunicación

El telescopio espacial solar enviará los datos científicos (banda Ka) a través de sus antenas mayores y los datos técnicos (banda S), utilizando las dos antenas omnidireccionales. La estación en la Tierra consiste en dos antenas con un radio de 18 metros situadas en White Sands, Nuevo México. Las antenas se construyeron específicamente para esta misión. El telescopio solar genera alrededor de 1,5 terabytes de datos por día. El Solar Dynamics Observatory (SDO) utiliza periódicamente la Antena Universal Space Network, en Soith Point, Hawái, para proporcionar resoluciones adicionales. Los controladores de la misión operarán de forma remota desde el centro de operaciones de la NASA en el Centro de vuelo espacial Goddard.

La instrumentación científica del telescopio solar consiste en:

  • Extreme Ultraviolet Variability Experiment: se trata de un instrumento que mide la emisión de radiación ultravioleta solar con cadencia regular, exactitud y precisión.
  • Helioseismic and Magnetic Imager: es un instrumento que estudia la variabilidad solar y los varios componentes de la actividad magnética solar.
  • Atmospheric Imaging Assembly: proporciona una imagen del disco solar en las diversas bandas del ultravioleta y del extremo ultravioleta de alta resolución temporal y espacial.

El Observatorio de Dinámica Solar (SDO) es parte de la Vida con una estrella de programa (LWS). [5] El objetivo del programa LWS es desarrollar el conocimiento científico necesario para abordar con eficacia los aspectos de la conexión SolTierra del sistema que afectan directamente a la vida y la sociedad. El objetivo de la SDO es entender la influencia del Sol sobre la Tierra y el espacio cercano a la Tierra mediante el estudio de la atmósfera solar en pequeñas escalas de espacio y tiempo y en muchas longitudes de onda simultáneamente. SDO ha estado investigando cómo el campo magnético del Sol se genera y se estructura, cómo esta energía magnética almacenada se convierte y se libera en la heliosfera y geoespacio en forma de viento solar, partículas energéticas, y las variaciones en la radiación solar. [6]

Generalsdo3

 Esta visualización cubre el mismo lapso de tiempo de 17 horas en todo el rango de longitudes de onda de la SDO.

La nave espacial SDO fue desarrollado en la NASA Goddard Space Flight Center en Greenbelt, Maryland. Algunos consideran SDO a ser una misión de seguimiento al Observatorio Solar y Heliosférico (SOHO). [8]

SDO es una nave espacial estabilizada en 3 ejes, con dos paneles solares, y dos antenas de alta ganancia. La nave incluye tres instrumentos: el Experimento ultravioleta extremo de la variabilidad (EVE), construido en colaboración con la Universidad de Colorado en Boulder ‘s Laboratorio de Física Atmosférica y Espacial (LASP), el Heliosísmicas y Imager Magnética (HMI), construido en colaboración con la Universidad de Stanford y la asamblea atmosférica (AIA) construido en colaboración con el Laboratorio Solar y de Astrofísica Lockheed Martin. Los datos que se recoge por la nave está a su disposición tan pronto como sea posible, después de que se recibe.[9]

Imager heliosísmica y magnéticas (HMI)

El Heliosísmicas y magnéticos Imager (HMI), dirigido desde la Universidad de Stanford en Stanford, California , estudia la variabilidad solar y caracteriza los componentes interiores y los diversos del sol de la actividad magnética. HMI produce datos para determinar las fuentes y mecanismos de la variabilidad solar interior y cómo los procesos físicos en el interior del Sol tienen relación con el campo magnético y la actividad de superficie. También produce datos para permitir estimaciones del campo magnético de la corona para el estudio de la variabilidad en la atmósfera solar prolongada. Observaciones HMI permitirán establecer las relaciones entre la dinámica interna y la actividad magnética a fin de comprender la variabilidad solar y sus efectos. [10] HMI tomarán mediciones de alta resolución del campo magnético longitudinal y vectorial sobre todo el disco solar visible extendiendo así la capacidades del SOHO instrumento MDI ‘s. [11]

Ultravioleta extremo de la variabilidad del ensayo (EVE)sdo4

El Experimento de Variabilidad del Ultravioleta Extremo (EVE) mide el Sun ‘s ultravioleta extrema irradiación con una mejor resolución espectral, “cadencia temporal”, la exactitud y la precisión respecto a las anteriores mediciones realizadas por CRONOMETRADO VER, SOHO, y SORCE XPS. El instrumento incorpora modelos basados en la física con el fin de una mayor comprensión científica de la relación entre las variaciones en el UVE solares y cambios magnéticos de variación en el Sol [12]

La salida de los fotones del ultravioleta extremo energéticas del Sol es principalmente lo que calienta la Tierra la atmósfera superior ‘s y crea la ionosfera. Solar salida de radiación EUV sufre cambios constantes, tanto un momento a otro y de más de 11 años del Sol ciclo solar, y estos cambios son importantes para entender porque tienen un impacto significativo en el calentamiento de la atmósfera, la fricción por satélite, y la degradación del sistema de comunicaciones, incluyendo la interrupción de el sistema de posicionamiento global.[13]

El paquete de instrumentos EVE fue construido por la Universidad de Colorado en Boulder ‘s Laboratorio de Física Atmosférica y Espacial, con el Dr. Tom Woods como investigador principal, [7] y fue entregado a Goddard Space Flight Center el 7 de septiembre de 2007. [14 ] El instrumento proporciona mejoras de hasta 70 por ciento en las mediciones de resolución espectral en las longitudes de onda por debajo de 30 nm, y una mejora del 30 por ciento en “cadencia tiempo” tomando mediciones cada 10 segundos durante un 100 por ciento de ciclo de trabajo. [13]

Asamblea atmosférica Imaging (AIA)

La Asamblea atmosférica Imaging (AIA), dirigido desde el Lockheed Martin Laboratorio Solar y de Astrofísica (LMSAL), proporciona observaciones de disco completo continuas de la energía solar cromosfera y la corona en siete ultravioleta extremo canales (EUV), que abarca un rango de temperatura de aproximadamente 20.000 grados Kelvin a más de 20 millones de grados Kelvin. La cadencia de 12 segundos del flujo de imágenes con 4096 por 4096 píxeles de las imágenes en 0.6 segundos de arco / pixel ofrece vistas sin precedentes de los diversos fenómenos que se producen dentro de la atmósfera exterior solar en evolución.

La investigación de la ciencia AIA está dirigida por LMSAL, que también opera el instrumento y – en colaboración con la Universidad de Stanford – ejecuta el Centro de Operaciones Científicas conjunta de la que todos los datos se sirven a la comunidad científica a nivel mundial, así como el público en general. LMSAL diseñado la instrumentación general y condujo su desarrollo e integración. Los cuatro telescopios que proporcionan luz individuo piensos para el instrumento fueron diseñados y construidos en el Observatorio Astrofísico Smithsoniano (SAO). [15] Desde el inicio de su fase operativa en 2010/05/01, AIA ha operado con éxito, con una calidad de imagen sin precedentes EUV.

Comunicaciones

SDO enlaces descendentes de datos de ciencias (K-banda) de sus dos a bordo de antenas de alta ganancia, y telemetría (banda S) de sus dos a bordo de antenas omnidireccionales. La estación de tierra consta de dos antenas dedicadas (redundante) de 18 metros de radio en White Sands Missile Range, Nuevo México, construidos específicamente para SDO. Controladores de la misión de la nave espacial operan de forma remota desde el Centro de Operaciones de la misión en el Centro de Vuelo Espacial Goddard de la NASA. La velocidad de datos combinada es de aproximadamente 130 Mbit/s (150 Mbit/s con una sobrecarga, o 300 Msímbolos/s con una tasa media de codificación convolucional), y la nave genera aproximadamente 1,5 terabytes de datos por día (equivalente a la descarga de alrededor de 500.000 canciones). [7]

La NASA ‘s Programa de servicios de lanzamiento en el Centro Espacial Kennedy logró la integración de carga útil y de lanzamiento.[21] El SDO lanzado desde la Estación Espacial de la Fuerza Aérea de Cabo Cañaveral Complejo de Lanzamiento 41, que utiliza un Atlas V -401 cohete con un RD-180 alimentado Common Core Booster, que ha sido desarrollado para satisfacer la Evolved fungible vehículo de lanzamiento (VTE) los requisitos del programa.[22]

Órbita

Después del lanzamiento, la nave espacial se colocó en una órbita alrededor de la Tierra con una inicial del perigeo de unos 2.500 kilómetros (1.600 millas). SDO continuación, se sometió a una serie de maniobras de órbita ganaderas que ajustar su órbita hasta que la nave espacial alcanzó su planeado circular , órbita geoestacionaria a una altitud de 35,789 kilómetros (22,238 millas), a 102 ° W de longitud, inclinadas a 28,5 °. [23]

Camilla

Camilla Corona es un pollo de goma (similar a un juguete para los niños), y es la mascota de la misión de la NASA Observatorio de Dinámica Solar ‘s (SDO). Es parte de la campaña de educación pública y de equipo y ayuda con diversas funciones para ayudar a educar al público, principalmente a los niños, sobre la misión SDO, hechos sobre el Sol y el clima espacial.[ Cita requerida ] Camilla también asiste en la cruzada informar al público acerca de otras misiones de la NASA y proyectos relacionados con el espacio. Camilla Corona SDO utiliza las redes sociales para interactuar con los aficionados.sdo5

Observatorio de Dinámica Solar: mirando al sol

Por Elizabeth Howell, Space.com Sénior | 15 de de abril de, el año 2016 14:26 ET

El Observatorio de Dinámica Solar tiene una Imager Heliosísmicas y magnéticas (HMI), una asamblea atmosférica (AIA), un experimento ultravioleta extremo de la variabilidad (EVE), así como los paneles solares y antenas de alta ganancia.

Crédito: NASA.

El Observatorio de Dinámica Solar es una nave de la NASA lanzado en 2010, a tiempo para coger las manchas solares y actividad solar en su punto máximo en 2013 como parte del ciclo de 11 años del sol.

El satélite pasa 24 horas al día, siete días a la semana mirando al sol, vistas grabación de alta definición de la atmósfera del Sol con un detalle nunca visto anteriormente.

Además de la simple observación del sol, la NASA está utilizando este observatorio para mejorar en la predicción de la actividad solar. SDO tiene como objetivo proporcionar información sobre la estructura del campo magnético del Sol, así como la forma de energía se transfiere desde el sol hacia el espacio.

Hasta el momento, SDO ha capturado vistas de alta resolución de las erupciones solares, proporcionado más información sobre la predicción de la actividad magnética, e incluso capturado un planeta que va a través de la cara del Sol (desde la perspectiva de la Tierra.)

Una vista IMAXsdo6

SDO es la primera de Vida de la NASA con unas sondas programa STAR. El sol es una valiosa fuente de energía y calor para el planeta, pero su variabilidad puede causar problemas en el tiempo. Una tormenta solar grande tiene la capacidad para destruir las líneas eléctricas o los satélites de comunicaciones, por ejemplo. La meta principal del programa, por lo tanto, es comprender por qué la energía del sol varía y cómo puede afectar a la Tierra.

Un instrumento a bordo es la asamblea atmosférica, que puede grabar imágenes del sol en la resolución IMAX. Con imágenes de alta definición disponibles en la mayoría de las 10 longitudes de onda disponibles cada 10 segundos, que permite a los científicos a observar durante la corona y ver cualquier cambio – no importa qué temperatura. Se esperaba que las observaciones continuas para obtener más información sobre las causas de las erupciones solares y erupciones coronales.

Los otros instrumentos son la Heliosísmicas y Imager magnética, que puede realizar un seguimiento de las corrientes eléctricas y la actividad magnético en la corona, y el Experimento ultravioleta extremo de variabilidad, que controla las emisiones solares ultravioletas.

La nave espacial tenía originalmente una vida útil de cinco años, pero ha durado más allá de un ciclo solar de 11 años, y todavía estaba actuando así a de principios de 2016.

Lanzamiento y primer año en el espacio

SDO costó $ 850 millones construir y poner en marcha. “Órbita geosíncrona inclinada de SDO fue elegido para permitir observaciones continuas del Sol y permitir su excepcionalmente alta tasa de datos mediante el uso de una sola estación de tierra especial”, ha indicado el sitio web del Observatorio de Dinámica Solar.

Los controladores se admiraban de lo SDO producida en su primer año de observaciones, en particular sus puntos de vista de la corona del sol. Normalmente, la parte del sol es el más visible durante los eclipses, pero con SDO, los científicos fueron capaces de ver lo que estaba haciendo la corona de su punta de la superficie del sol.

“La ciencia es realmente el aumento gradual de y es muy emocionante descubrir todas las capacidades de los instrumentos,” Phil Chamberlin, SDO científico adjunto del proyecto del Centro de Vuelo Espacial Goddard en Greenbelt, Md., A SPACE.com en 2011.

La misión ha superado definitivamente mis expectativas hasta el momento – y mis expectativas eran muy altas, para empezar”.

Los nuevos desarrollos SDOsdo7

A medida que el sol se movía hacia el máximo solar en 2013, las capacidades de SDO realmente comenzaron a brillar para los astrónomos. Una llamarada solar de mayo fue capturado en alta resolución, con imágenes en múltiples longitudes de onda que muestran la extensión de la erupción prominencia. La bengala, sin embargo, se considera de tamaño mediano, lo que significa que las erupciones más espectaculares podrían venir ante las cámaras.

Con el ojo de SDO en el sol, nada de lo que pasa por delante de ella también podría ser capturado por la cámara. Un ejemplo notable fue Venus, que transitó a través del sol (desde la perspectiva de la Tierra) 5-6 de junio de, 2012. El evento es predecible pero extremadamente rara.; el tránsito antes fue en 2004, pero la próxima no se producirá hasta sdo82117.

Ese mismo año, SDO capturó un “tornado” solar que fue cinco veces mayor que la Tierra, moviéndose a través de la superficie del Sol – en ambas imágenes y vídeo. En ese momento, la NASA dijo que era probable que la primera vez que un video había sido capturado de la actividad.

El tornado fue formado por el campo magnético del sol; De la Tierra, por el contrario, se producen debido a la actividad del viento. También se movió mucho más rápido; Los científicos estiman tornado del sol se volvió a hasta a 186.000 mph (300.000 kilómetros) por hora, mientras que una tormenta de tierra por lo general no más rápido va de aproximadamente 300 mph (483 kph).

Más de estas plasma ‘tornados ‘ han sido capturados por SDO, como el que se produjo a finales de 2015. Eventos de observación como ésta da a los científicos más información sobre los mecanismos subyacentes de la producción de plasma del sol.

Observaciones a largo plazo de SDO del sol también muestran los científicos cuando algo diferente está sucediendo. Por ejemplo, en junio de 2011 se produjo una eyección de masa coronal que expulsa una inmensa cantidad de plasma, o gas sobrecalentado. Los científicos en 2014 los resultados publicados diciendo que observaron el plasma división en “dedos” de la materia de una manera similar que se ha observado en la Nebulosa del Cangrejo, un remanente de supernova. Esta fue una oportunidad inusual para estudiar lo que se conoce como el fenómeno de Rayleigh-Taylor a gran escala.

También en 2014, los científicos observaron líneas de campo magnético bucle y causar una erupción en la atmósfera del sol. El material de archivo de alta resolución captadas por SDO confirmó la teoría de que había tenido lugar durante años. Este tipo de observaciones, será más fácil predecir dónde ocurren grandes llamaradas, que podría proteger mejor infraestructura en la Tierra, dijeron los científicos en el momento.

Deja una respuesta

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.