Este Mundo, a veces insólito

Calendario
octubre 2024
L M X J V S D
 123456
78910111213
14151617181920
21222324252627
28293031  

Naturaleza

Catástrofe de Aberfan

Catástrofe de Aberfan

Coordenadas: 51°41′41″N 3°20′51″O

Suceso: Deslizamiento de pilas de escombros de una mina de carbón sobre el pueblo de Aberfan.

Fecha: 21 de octubre de 1966

Hora: 9:15 a. m.

Causa: Acumulación de agua dentro de la pila de escombros que hizo que se deslizara repentinamente hacia abajo en forma de lodo.

Lugar: Aberfan, Merthyr Tydfil, Gales

Resultado: Aprobación de la Ley de Minas y Canteras de 1969.

Fallecidos: 144 personas; (116 niños y 28 adultos)

Implicado

Operador: Junta Nacional del Carbón

La catástrofe de Aberfan fue el colapso de la escombrera de una mina de carbón, producida a las 9:15 de la mañana del 21 de octubre de 1966 en el pueblo galés de Aberfan, en el condado de Merthyr Tydfil, que tuvo como consecuencia la muerte de 144 personas (116 niños y 28 adultos). El siniestro fue causado por la acumulación de agua en las rocas y piedra caliza amontonadas, que de repente comenzaron a deslizarse hacia abajo en forma de barro.12

Más de 40.000 metros cúbicos de escombros cubrieron el pueblo en cuestión de minutos, y las aulas del Colegio Pantglas Junior se inundaron de inmediato, por lo que los niños pequeños y los maestros murieron por impacto o asfixia. Se hicieron grandes esfuerzos de rescate, pero la gran cantidad de barro que se agolpaba en el pueblo obstaculizó el trabajo de los equipos de rescate. Solo unas cuantas vidas pudieron salvarse en cualquier caso. La investigación oficial culpó a la Junta Nacional del Carbón por negligencia extrema, y a su presidente por hacer declaraciones engañosas. El Parlamento aprobó poco después una nueva legislación sobre seguridad pública en minas y canteras. Muchos de los residentes del pueblo sufrieron problemas médicos, y la mitad de los supervivientes sufrieron trastorno por estrés postraumático en algún momento de sus vidas.2

Mapa del informe de la investigación de 1967, que muestra la extensión del derrame de escombros (dentro de las líneas punteadas).

Aberfan, Mid Glamorgan

Antecedentes

Aberfan está situada en el fondo de la ladera oeste del valle de Taff, en la ladera este de la colina Mynydd Merthyr, aproximadamente a 6,4 km al sur de Merthyr Tydfil. Cuando se comenzó la excavación de la mina por parte de John Nixon y sus socios el 23 de agosto de 1869, Aberfan estaba formada por dos cabañas y una posada frecuentada por granjeros y barqueros locales.34​ Hacia 1966 la población había crecido hasta alcanzar los cinco mil habitantes aproximadamente, la mayoría de los cuales estaban empleados en la industria del carbón.45​ Desde la nacionalización de la industria británica del carbón en 1947, la mina de Aberfan estuvo bajo el control de la Junta Nacional del Carbón (NCB).6​ La regulación en la industria del carbón fue auspiciada por la inspección de minas de Su Majestad. Los inspectores habían trabajado como ingenieros en la industria del carbón y eran antiguos empleados de la NCB.7​ El río Taff corre de norte a sur a través de la aldea; y al oeste en las afueras, en la parte superior del asentamiento, hay un lecho del canal en desuso y un terraplén ferroviario paralelo al río.89

Los primeros residuos de la mina de carbón se depositaron en las laderas inferiores del valle, al este del canal; pero durante la década de 1910 se comenzó a verter en las laderas occidentales, sobre la línea del canal y el pueblo. Para 1966 había siete pilas de escombros, que comprendían aproximadamente dos millones de de desechos.1011nota 1​ Las pilas cuatro y cinco eran montículos cónicos en el ápice de la pendiente; aunque la pila siete, de 34 metros, contenía 227.000 que incluían desechos de relaves procedentes de la extracción química del carbón así como partículas finas igualmente de carbón y cenizas que adquirían propiedades similares a las de arenas movedizas al mojarse.4151617

La estabilidad de las pilas se vio afectada por el agua, ya que las pilas cuatro, cinco y siete habían sido ubicadas sobre los cauces de arroyos o manantiales.18​ La presencia de los manantiales era de conocimiento público en la zona, y estos se encontraban demarcados en los mapas de la Sociedad Geológica de Londres y del Estudio de Ordenanzas desde 1874.1920​ La cuarta pila, que había sido utilizada entre 1933 y 1945, era grande y se había iniciado sobre un terreno pantanoso entre dos arroyos. En el momento de su planificación, el ingeniero del municipio de Merthyr Tydfil pensó que, a pesar de la posición, era poco probable que se produjera una avalancha. Después de algunos movimientos del suelo en la punta de la pila a principios de la década de 1940, se cavó un canal de drenaje a principios de 1944. En noviembre de aquel año, parte de la punta de la pila se deslizó 490 m por la montaña para detenerse a aproximadamente 150 m sobre el pueblo.1621​ En mayo de 1963, la pila siete cambió ligeramente y para noviembre de ese mismo año hubo una caída más sustancial. La Junta Nacional del Carbón declaró que el movimiento no había sido un deslizamiento sino una corrida de relaves; es decir, un movimiento de relaves en la punta de la pila, que no afectaba a su estabilidad. Después del deslizamiento, la JNC dejó de verter relaves en la pila siete, pero se siguió depositando escombro normal.22

Aberfan se encuentra en un área de precipitaciones relativamente altas, con un promedio de 1500 mm de lluvia al año. En 1960 el total de lluvias fue de 1790 mm, la cantidad más alta en los años previos al desastre.2324​ Entre 1952 y 1965 se produjeron graves inundaciones en la zona de Pantglas de Aberfan, al menos en once ocasiones. Los residentes se quejaron de que el agua de la inundación era negra y dejaba un residuo grasiento cuando retrocedía.25​ Además, los residentes habían presentado quejas ante el Consejo Municipal del Condado de Merthyr Tydfil, que mantuvo correspondencia con la JNC entre julio de 1963 y marzo de 1964 sobre el tema del «peligro de que la lechada de carbón se vierta en la parte trasera de las escuelas de Pantglas».26​ A principios de 1965 se celebraron reuniones entre el concejo y la junta, en las que esta acordó tomar medidas sobre las tuberías y las zanjas de drenaje obstruidas, que fueron la causa de las inundaciones. Para octubre de 1966 no se había adoptado ninguna medida.27

Colapso de los escombros

Durante las primeras tres semanas de octubre de 1966 hubo 170 mm de lluvia, casi la mitad de la cual fue en la tercera semana.23​ Durante la noche del 20 al 21 de octubre, el pico de la pila siete bajó de 2,7 a 3 m y los rieles en los que se transportaba el escombro a la parte superior de la punta cayeron en el agujero resultante. El movimiento de escombros fue descubierto a las 7:30 de la mañana por los primeros miembros del turno de la mañana que se ocupaban de los montones. Uno de los trabajadores se dirigió a la mina para reportar el deslizamiento; regresó con el supervisor a las pilas, y se decidió que no se haría más trabajo ese día, pero que se decidiría una nueva posición para las pilas la semana siguiente.102829nota 2

Fotografías aéreas de Aberfan antes y después del colapso de los escombros.

Antes del colapso

Después del colapso

A las 9:15 a. m. una cantidad significativa de escombros saturados de agua se desprendieron de la pila 7 y fluyeron cuesta abajo a 18-34 km/h en olas de 6-9 m de alto nota 3​ G. M. J. Williams, un ingeniero consultor que dio evidencia en el tribunal subsiguiente, declaró que el movimiento de las 9:15 a. m.: tomó parte del material saturado más allá del punto donde ocurrió la licuefacción. Este material inicialmente licuado comenzó a moverse rápidamente, liberando energía que licuaba el resto de la porción saturada de la punta, y casi instantáneamente la naturaleza de las partes inferiores saturadas de la punta No. 7 fue cambiada de la de un sólido a la de un líquido pesado de una densidad de aproximadamente el doble de la del agua. Se trataba de la oscura y brillante ola que varios testigos vieron estallar desde la parte inferior de la punta.

G.M. J. Williams

La avalancha golpeó la Pantglas Junior School, en Moy Road, envolviendo y demoliendo gran parte de la estructura y llenando las aulas de lodo, escombros y barro; cinco maestros y ciento nueve niños murieron de los doscientos cuarenta que asistieron ese día. Los alumnos de la Pantglas Junior School habían llegado solo unos minutos antes para el último día de clases antes de las vacaciones de medio año, que debían comenzar a las 12:00 p.m. Los maestros acababan de empezar a registrar la asistencia de los niños cuando se produjo el derrumbe.32​ La escuela secundaria adyacente también sufrió daños y dieciocho casas en las carreteras circundantes fueron destruidas.33​ El barro y el agua del deslizamiento inundaron otras casas en las cercanías, obligando a muchos a evacuar sus hogares. Una vez que el material del deslizamiento se detuvo, se solidificó nuevamente. nota 4​ Un enorme montículo de lodo de hasta 9,15 m de altura bloqueó el área.313536​ El director en funciones de la escuela secundaria recordó:

La entrada de las niñas ⟨de la escuela secundaria⟩ estaba aproximadamente entre dos tercios y tres cuartas partes llena de escombros y materiales de desecho… me subí a los escombros de la puerta… cuando miré directamente delante de mí… vi que las casas de Moy Road se habían esfumado en una masa de material de desecho y que el frontón de la Junior School, o parte del techo, sobresalían de este pantano. Miré a mi derecha y vi que las casas de Moy Road habían desaparecido.37

Algunos miembros del personal murieron tratando de proteger a los niños. Nansi Williams, la encargada de la comida en la escuela, usó su cuerpo para proteger a cinco niños, todos los cuales sobrevivieron. Williams no sobrevivió y fue encontrada por los rescatadores todavía sosteniendo un billete de 1 libra que ella había estado recolectando para el almuerzo.38​ El subdirector, Dai Benyon, trató de usar una pizarra para protegerse a sí mismo y a cinco niños de la lechada que pasaba por la escuela. Él y los treinta y cuatro alumnos de su clase murieron.39​ Cuando la avalancha se detuvo, también lo hizo el ruido; un residente recordó que «en ese silencio no se podía oír ni a un pájaro ni a un niño».40

Rescate

Después de terminado el deslizamiento, los residentes corrieron a la escuela y comenzaron a cavar entre los escombros, moviendo el material a mano o con herramientas de jardinería.41​ A las 9:25 a. m. la policía de Merthyr Tydfil recibió una llamada telefónica de un residente local que dijo: «Se me pidió que les informara que ha habido un desprendimiento de tierra en Pantglas. El escombro ha llegado hasta la escuela».42​ El cuerpo de bomberos de Merthyr Tydfil recibió una llamada casi al mismo tiempo.43​ Luego se hicieron llamadas a hospitales locales, al servicio de ambulancias y al cuerpo de Defensa Civil local.44​ Los primeros operarios de la mina de carbón llegaron a los veinte minutos de la catástrofe, después de haber sido sacados de los yacimientos de carbón en los que habían estado trabajando. Dirigieron las primeras excavaciones, conscientes de que una excavación no planificada podría provocar el colapso de los escombros y los restos de los edificios; trabajaron en grupos organizados bajo el control de sus gerentes de pozo.4445

Las primeras víctimas de los escombros de la escuela llegaron al Hospital de St. Tydfil a las 9:50 a. m.; el resto de las víctimas rescatadas llegaron antes de las 11:00 a. m.: veintidós niños, uno de los cuales murió al llegar y cinco adultos. Otras nueve víctimas fueron enviadas al Hospital General de East Glamorgan.46​ No se encontraron supervivientes después de las 11:00 a. m. De las ciento cuarenta y cuatro personas que murieron en la catástrofe, ciento dieciséis eran niños, en su mayoría entre los siete y los diez años; ciento nueve de los niños murieron en el interior de la Pantglas Junior School. Cinco de los adultos que murieron eran maestros en la escuela. Otros seis adultos y veintinueve niños resultaron heridos.33

Consecuencias

El 25 de octubre de 1966, después de las resoluciones de la Cámara de los Lores y la Cámara de los Comunes del Parlamento, el Secretario de Estado para Gales designó formalmente un tribunal para investigar el desastre.47

Legado

La mina de carbón de Merthyr Vale fue clausurada en 1989.48​ En 1997, el secretario de estado para Gales, Ron Davies, reembolsó al fondo para prevención de desastres las ₤150.000 libras esterlinas con que el fondo contribuyó al coste de la remoción de escombros. No se hizo ningún aporte por la inflación, ni por los intereses que se habrían generado durante el periodo intermedio, que habrían sido de ₤1,5 millones de libras esterlinas en 1997.4950

Además de las noticias y la cobertura histórica, la catástrofe de Aberfan y sus secuelas se ha descrito en libros, incluyendo historias de lo que sucedió, memorias personales de los involucrados y colecciones de poesía, en música, en el cine y en series de televisión.51

Pasaron más de cinco décadas desde aquel día, pero Isabel II recordó hasta su muerte con dramática precisión la avalancha que golpeó al colegio primario Pantglas, de Aberfan, en Gales. Esos recuerdos le pesan como una losa: 116 niños y 28 adultos murieron asfixiados bajo la inexpugnable masa de lodo, escombros y piedras. El pueblo minero había quedado sepultado.

Cuando ese día le avisaron lo ocurrido, la Reina decidió que fuera su marido, Felipe de Edimburgo, al lugar de los hechos en representación suya. No imaginó que tantos niños muertos convertiría a la catástrofe en una tragedia nacional de proporciones inconmensurables.

Las críticas que señalaban su lentitud para reaccionar no tardaron en llegar. Ocho días después, Isabel II se presentó en Aberfan y derramó, como nunca en su vida, lágrimas en público.

Mucho tiempo después le preguntaron si tenía algo de qué arrepentirse durante su largo reinado, los que estaban presentes dicen que ella no dudó en responder: no haber asistido inmediatamente al lugar del colapso. Y, sobre ésta triste anécdota, correrían otros ríos, los de tinta y celuloide, magnificando o justificando aquel “histórico error” de la Monarca inglesa.

Los niños que murieron tenían entre 7 y 10 años. Era su último día de clase. Estaban dando el presente cuando la avalancha arrasó la escuela (Shutterstock)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Después de la tragedia se realizó un funeral masivo para 81 niños Getty Images

Quizá por eso, Elizabeth realizó más visitas a ese pueblo en los años siguientes que cualquier otro miembro de la familia real. Volvió en 1973, 1997 y 2012. En 2016, cuando se celebró el 50° aniversario de la tragedia, fue su hijo, el príncipe Carlos, quien viajó a Gales a leer un mensaje en el que ella alababa la entereza de sus habitantes.

“Recuerdo muy bien mi visita con el príncipe Philip después del desastre -dijo-. Desde entonces, hemos regresado en varias ocasiones y siempre nos ha impresionado profundamente la notable fortaleza, dignidad y espíritu indomable que caracteriza a la gente de este pueblo”.

Desastre del Prestige

Desastre del Prestige

Coordenadas: 42°53′00″N 9°53′00″O

Suceso: Hundimiento de un petrolero y desastre medioambiental

Fecha: 13 de noviembre de 2002

Causa: Desperfectos tras un temporal

Lugar: Costa de la Muerte; España

Resultado: Hundimiento del barco y vertido tóxico

Origen: San Petersburgo

Última escala: Ventspils

Destino: Gibraltar

El desastre del Prestige fue un derrame de petróleo en Galicia provocado por el hundimiento del buque petrolero Prestige en 2002. El accidente afectó a 2000 kilómetros de costa española, francesa y portuguesa.

El miércoles 13 de noviembre de 2002, el petrolero monocasco Prestige se accidentó en una tormenta mientras transitaba cargado con 77 000 toneladas de fuel pesado frente a la Costa de la Muerte, en el noroeste de España. Tras varios días de maniobra para su alejamiento de la costa gallega, se acabó hundiendo a unos 250 km de la misma. El vertido de la carga causó una de las catástrofes medioambientales más grandes de la historia de la navegación, tanto por la cantidad de contaminantes liberados como por la extensión del área afectada, una zona comprendida desde el norte de Portugal hasta las Landas de Francia. El episodio tuvo una especial incidencia en Galicia, donde causó además una crisis política y una importante controversia en la opinión pública. El derrame de petróleo del Prestige se consideró en su momento el tercer accidente más costoso de la historia,1​ pues la limpieza del vertido y el sellado del buque tuvieron un coste de 12 000 millones de dólares según algunas fuentes,1​ el doble que la explosión del Challenger pero por detrás de la desintegración del Columbia y el accidente nuclear de Chernóbil.1No obstante, esta información viene dada de fuentes antiguas sin actualizar, que no tienen en cuenta los incidentes acaecidos en los últimos años, como el Accidente nuclear de Fukushima I o el hundimiento de la plataforma petrolífera Deepwater Horizon.

El barco del Prestige

El petrolero Prestige durante el hundimiento.

El Prestige —anteriormente llamado Gladys2​ era un petrolero monocasco de clase Aframax —de 80 000 a 115 000 toneladas de carga— de registro griego que navegaba con bandera de las Bahamas. El propietario del barco era la compañía Mare Shipping de Liberia; lo explotaba la naviera griega Universe Maritime y la carga era propiedad de la compañía petrolera rusa Crown Resources, con sede en Suiza. El buque tenía 243,5 m de eslora, 34,4 m de manga, 18,7 m de puntal y 14 m de calado a plena carga. Fue construido por Hitachi Shipbuilding Engineering, en Maizuru (Japón) y botado al mar el 1 de marzo de 1976. Estaba registrado por la sociedad de clasificación estadounidense American Bureau of Shipping (ABS) y asegurado por The London Steamship Owner’s Mutual Insurance Association del Reino Unido.

La carga

La capacidad de carga del buque era de 81 589 toneladas: el barco transportaba 76 972,95 toneladas de fuelóleo de alta densidad y viscosidad tipo M-100,nota 1​ cargado en San Petersburgo (Rusia) y en Ventspils (Letonia), con probable destino a Singapur ; aunque en el cuaderno de bitácora el destino no figuraba y por radio informó de que su destino era Gibraltar a la espera de órdenes.

La tripulación estaba formada por 27 personas, 7 oficiales y 20 tripulantes, 19 filipinos y un rumano. El capitán, Apostolos Mangouras, era un marino griego de 67 años de edad y una experiencia de 44 años navegando, 30 de ellos como capitán.

El barco partió de Fujaira (Emiratos Árabes Unidos) el 23 de mayo, repostó en Gibraltar a primeros de junio y llegó a San Petersburgo a finales de ese mes. Allí permaneció atracado hasta el 30 de octubre, día en el que terminó de cargar el fuelóleo y se hizo a la mar. Dos días después completó su carga en Letonia y comenzó su viaje de vuelta hacia Gibraltar, donde debían esperar para recibir su destino definitivo.

Causa del accidente

Se especuló con la posibilidad, nunca demostrada, de que la grieta en el casco del Prestige fuese provocada por el choque con un contenedor o un tronco a la deriva. Se sabe que horas antes, tres barcos que navegaban por la misma zona transportando contenedores, troncos de madera y tubos de 1 metro de diámetro, perdieron parte de sus cargas. Un barco perdió ese mismo día 13 de noviembre unos 200 troncos de 17 m de largo por 30-50 cm de diámetro. Muchos de ellos aparecieron en la costa los días siguientes4​ y consta en las transcripciones de las cintas grabadas entre los equipos de salvamento, pues en la madrugada del día siguiente al aviso de emergencia se ordena a la embarcación Salvamar Atlántico que abandone la búsqueda de troncos en alta mar y acuda a combatir un vertido de fuel que amenazaba con entrar en la ría de Muros. El Salvamar dejó los troncos recogidos en Puerto del Son y fue a cumplir la orden. El capitán Mangouras declararía al juez, tras ser detenido, que «La fisura en el costado de estribor se produjo por un golpe externo, a causa de un contenedor o del oleaje».5

Sin embargo, la tesis más aceptada es que la rotura del casco se debió a la fatiga de los materiales ante los embates del mar, lo que provocó una grieta en el costado de estribor que afectó los tanques de carga. Esta grieta, que en un primer momento se estimó de unos 15 metros, fue ampliándose hasta alcanzar los 35 metros los días siguientes. Otra posible explicación es el desprendimiento de una plancha del casco del buque, al cual le habrían seguido otros desprendimientos según avanzaban los días.

El barco, de 26 años de antigüedad, se encontraba en muy mal estado y fue reparado en 2001 en Cantón (China); en esta reparación fueron reforzadas las paredes de los tanques de lastre 2 y 3 de estribor por presentar corrosión y deformaciones.6​ Incluso ya en 1996 fue también reparada esta misma zona en Constanza (Alemania).6​ En 1999 el buque fue sancionado en Nueva York y Róterdam por distintos errores de seguridad graves, y la Asociación Española de Operadores de Productos Petrolíferos lo tenía vetado. A pesar de eso hay que decir que el barco había pasado todas las inspecciones que se le habían hecho y que tenía todos los papeles en regla.

La mencionada reparación en China, que sirvió de base para una acusación frustrada a la empresa certificadora ABS, parece estar muy ligada al accidente. En mayo de 2001 se realizó una inspección que reveló la corrosión que sufrían los mamparos de los tanques de fuel, de un grado tal que precisaban a sustitución de al menos 1000 toneladas de acero. Los propietarios del Prestige consiguieron rebajar esta cifra a 600 toneladas, y la propia ABS rebajó el arreglo a 362 toneladas de acero. Pero la realidad es que solo se sustituyeron 282 toneladas, según las actas del astillero chino. Posteriormente, en mayo de 2002 el barco fue revisado de nuevo en Dubái, pero esa inspección no comprobó el estado de la corrosión de los mamparos de los tanques 2 y 3 de lastre.7

Según declaró en 2008 en su juicio Georgios Aleivizos, director técnico de la armadora griega Universe Maritime, el barco estaba desde hacía meses realizando labores de transporte no estuario desde San Petersburgo y no había pasado las pertinentes revisiones porque su destino era ser desguazado: «No te preocupes por el Prestige, morirá en San Petersburgo», declaró que le dijo Michail Marguetis, su superior. No obstante, se le asignó un último encargo para transportar fuel a Singapur, para lo que se contrató al capitán Efstrapios A. Kostazos, pero este denunció en varias ocasiones el pésimo estado del barco al armador y a la aseguradora, por lo que renunció a realizar el viaje. Se decidió entonces contratar al capitán Mangouras, quien se hizo cargo del barco en septiembre de 2002.8

En opinión de Alevizos, el armador griego, la causa del accidente pudo ser el desprendimiento de un mamparo longitudinal del tanque de lastre de estribor, y no un agente externo como un objeto flotante.9

El hundimiento

Recorrido del Prestige hasta su hundimiento.

Miércoles, 13 de noviembre de 2002

A las 15:10 horas del 13 de noviembre de 2002 el capitán oyó un fuerte golpe —según declaró ante el juez—, «como una explosión», y notó como el barco comenzaba a escorar rápidamente, entre 25 y 40º al cabo de diez minutos, a la vez que observó la salida de fuel por las escotillas de cubierta. Una vía de agua afectó a dos tanques de lastre de estribor. Al temer que el barco se hundiera, solicitó a las 15:15 horas ayuda a los servicios de rescate españoles para poder refugiarse en un puerto. En esos momentos, las condiciones meteorológicas imperantes eran de un fuerte temporal, con vientos entre 63 y 74 kilómetros por hora —con rachas de 90 km/hora— y olas de 6—8 metros de altura.10​ El barco se encontraba a 42º 54’N de latitud norte y 9º 54’W de longitud oeste,nota 2​ a unas 28 millas (unos 50 kilómetros) del cabo Finisterre.

Cuando el Centro de Salvamento de Finisterre recibió el mensaje de Mayday del barco, se puso en marcha el operativo de rescate: se dio la alerta al helicóptero Helimer Galicia, del Ministerio de Fomento, y al Pesca I del Servicio de Gardacostas de Galicia, con el objetivo de evacuar a la tripulación. Salvamento de Finisterre ordenó que también partiese el remolcador Ría de Vigo, fletado por Salvamento Marítimo en aquel momento.

Helicóptero Sikorsky S-61 de la Salvamento Marítimo como el que realizó las tareas de rescate de la tripulación, con capacidad para más de 30 personas.

Poco después de las seis de la tarde, 24 tripulantes se encontraban a salvo a bordo de los helicópteros, y fueron trasladados a Vigo y La Coruña. Solo permanecieron en el barco el capitán, el primer oficial y el jefe de máquinas. En ese momento, el capitán decidió llenar los tanques de lastre de babor para equilibrar el peso y consiguió corregir la escora a 8 grados, pero esta solución somete al barco a esfuerzos fuertes y debilita la estructura.

A las 18:30 horas el remolcador Ría de Vigo llega junto al Prestige, pero pasan unas horas sin que se inicien los trabajos de salvamento del barco. Según la prensa internacional el valor de un buque de esas características era de unos 22 millones de dólares, aunque un barco de 26 años como el Prestige estaría valorado en unos 4—5 millones de dólares, y la carga podría costar unos 10 millones de dólares, lo que implica una recompensa millonaria para quien realice el rescate. Por este motivo, el capitán decide atrasar el remolcado hasta recibir instrucciones de los armadores de Atenas. Al final el acuerdo alcanzado establecía el pago del 30% el valor del buque y de la carga si el rescate tenía éxito, pero se cubrirían los gastos si el barco se hundía.11​ Hasta que se alcanza el acuerdo, las 21.02 horas, el capitán no admite ser remolcado.

El problema fue que el fuerte oleaje dificultaba considerablemente la operación de rescate y no era posible enganchar y mantener los cables de los remolcadores, tanto los del Ría de Vigo como otros barcos de rescate más pequeños que habían llegado para ayudar en las tareas de rescate, el Charuca Silveira, el Ibaizabal I y el Sertosa 32. Además, la ausencia de tripulación en el barco, pues habían sido evacuados esa tarde, obligaba al personal de rescate a subir al Prestige a enganchar los amarres con los que remolcar el buque, por lo que a las 2:21 de la madrugada dos tripulantes del Ibaizabal fueron depositados en el buque. Mientras tanto, el barco seguía perdiendo fuel, que llegó esa madrugada a Mugía.

Jueves, 14 de noviembre

El Alonso de Chaves, uno de los dos remolcadores que intervinieron en el rescate.

El día 14 amaneció con el barco a 4 millas de la costa12​ y no es hasta las 8:50 cuando se fijan dos amarres del Charuca Silveira, que consiguió sujetar firmemente al Prestige en su posición, pero sin iniciar las tareas de remolcado. Una hora después el Sertosa 32 consiguió también fijar sus remolques, pero por poco rompe los amarres del primero.

El accidente, y la previsible catástrofe ecológica, ya estaban en la mesa del gobierno regional y el estatal, sin que ninguno de los dos supiese qué hacer con el barco. Los armadores proponen entonces trasvasar el carburante a otro buque o llevar el Prestige al puerto de La Coruña, para un vertido de fuel controlado en puerto, pero la capitanía marítima de La Coruña, tras consultarlo con un técnico de la Marina Mercante, desecha esas posibilidades por el grave perjuicio económico que hubiera supuesto mantener cerrado el puerto de La Coruña durante al menos un año. Las autoridades, sin embargo, solo propusieron la solución de alejar el buque de la costa para evitar que quede varado en ella. Fue entonces cuando el consejero de Pesca, López Veiga insiste en que «Hay que sacar ese barco de ahí de una puta vez».13​ Posteriormente se supo que el ministro de Fomento, Álvarez-Cascos, solo solicitó informes técnicos cinco días después del accidente, cuando ya se había tomado la decisión de abandonar el barco, decisión que tomó por lo tanto basándose en opiniones de altos funcionarios, pero no técnicos.

La tapa de la bita del Prestige, recuperada por el submarino Nautile, es la única pieza original que se conserva del buque. Se encuentra expuesta en el Museo del Mar de Galicia (Vigo).

A las 10:20, el director general de la Marina Mercante, José Luis López Sors, ordena que el barco se aleje de la costa en lo que se cree que fue una orden directa del ministro Álvarez-Cascos.14​ Tras vencer las reticencias del capitán, pues la versión oficial siempre insistió en la resistencia de Mangouras ante las maniobras de rescate ordenadas por las autoridades españolas, se consiguió que arrancasen los motores —a las 15:30 horas— y se aseguró que el barco comenzara a navegar mar adentro, a unos 6 nudos y, aparentemente, sin problemas. Díaz Regueiro abandonó el barco a las 19:30 horas, cuando ya estaba a 25 millas al noroeste de Cabo Vilán y avanzando a velocidad constante, escoltado por cinco buques de Salvamento Marítimo y la fragata Cataluña —que llegó a la zona a primera hora de la mañana— para asegurarse de que se mantuviera a una distancia mínima de la costa de 61 millas; a las doce de la noche ya se encontraba a 65 millas.

Viernes, 15 de noviembre

La Torre de control marítimo de La Coruña, donde se instaló el Centro de Coordinación de Operaciones para gestionar el rescate.

Paralelamente, los armadores contrataron los servicios de salvamento de una empresa especializada holandesa, la Smit Salvage, En cualquier caso, los técnicos que siguen el accidente ya contemplaban una probabilidad alta de que el casco se rompiera en dos en cuestión de pocos días. Con los motores parados, solo queda la posibilidad de remolcar el buque. Pero a última hora de la tarde del viernes 15 solo el remolcador Ría de Vigo se encuentra en condiciones de hacerlo, pues el Sertosa 32 se averió y el remolcador del Ministerio de Fomento Alonso de Chaves no consiguió amarrar el cabo de remolque. De hecho, los trabajos de remolcado no avanzaban y el barco se encontraba prácticamente a la misma distancia de la costa del día anterior, 62 millas. Esa misma tarde se trasladó a tierra cinco de los tripulantes y el capitán pidió la evacuación, que se llevó a cabo a las 18 horas en el helicóptero Helimer Cantábrico. El capitán Mangouras fue detenido por la Guardia Civil en cuanto llegó al aeropuerto de La Coruña, acusado de no cooperar con los equipos de salvamento y de causar graves daños al medio ambiente.

Sábado, 16 de noviembre

Alcatraz lleno de chapapote en una playa de El Grove.

Durante el sábado 16 el barco siguió siendo remolcado con rumbo Sur a una velocidad de 1.5 nudos. En la madrugada, el remolcador Ría de Vigo advirtió sobre el peligro que suponía el buque: «Esto se parte en cualquier momento»; por lo que se ordena al remolcador Alonso de Chaves que amarre la parte de popa y, así, si ocurre tal cosa, las dos mitades estarán remolcadas.

Domingo, 17 de noviembre

El domingo 17, el consejero de Pesca López Veiga intentó tranquilizar a la población: «No se trata de una marea negra, sólo de un vertido de fuel», pero prohíbe la pesca entre Mera y Finisterre. El Ministerio de Fomento trae más barreras anticontaminantes, hasta un total de 18 km sumando las que se llevaran el día 14, pero resultan ineficaces porque el fuerte oleaje hace que el fuel supere las barreras con facilidad y, en algunos casos, el temporal las rompe al poco de ser instaladas.

La grieta abierta en el casco del barco era ya de unos 50 metros, pero no acababa de hundirse y resistía a flote a 55—80 millas de la costa,nota 3​ por lo que se estudia la posibilidad de hundirlo mediante artillería o con bombas incendiarias. En Portugal se ve con recelo el itinerario hacia el Sur que seguía el barco, por lo que anunciaron que no iban a aceptar bajo ningún concepto que llegase a entrar en su zona marítima y llevaron a las proximidades del barco la corbeta Joao Coutinho y un avión de la Armada portuguesa.

Lunes, 18 de noviembre

El lunes 18 llegó a la zona el remolcador chino De Da, contratado por la empresa Smit Salvage, y sustituye al Ría de Vigo;nota 5​ el Prestige sigue rumbo sur, ahora a 3 nudos, dirigiéndose a la ZEE (Zona Económica Exclusiva) de Portugal, tal y como lo declara el capitán del De Da al de la corbeta portuguesa João Coutinho que vigila las maniobras. Esta insiste en que no consentirá que el Prestige toque esas aguas; al tercer aviso, el De Da vira unos grados al Oeste.24

El Gobierno español constituye un gabinete de crisis interministerial, en el que participan 11 ministerios, bajo la dirección de Mariano Rajoy, como vicepresidente.

Martes, 19 de noviembre

Finalmente, a las ocho de la mañana del martes 19 de noviembre, el petrolero se partió por la mitad y las dos partes se hundieron completamente al cabo de unas horas; la popa se hundió sobre las 11:45 horas de la mañana y la proa a las 16:18 horas, después de un tortuoso recorrido frente a las costas gallegas de 243 millas (437 km). En ese momento, el barco estaba a 130 millas —132 millas según otras fuentes— de la costa de Finisterre, unos 234 km, —260 km según otras fuentes—, a la altura de las Islas Cíes, de alto valor ecológico, cuando la marea negra ya afectaba 300 km de costa.

Capa de chapapote en la playa.

En el momento del naufragio se rompieron otros tres tanques que liberaron entre 10 000 y 12 000 toneladas más de carburante; y después el ahora pecio siguió liberando vertiendo fuel hasta que solo quedaron unas 13 700 toneladas que serían retiradas en 200425​ —la carga inicial era de una 77 000 toneladas

Hoy en día, la popa se encuentra a una profundidad de 3545 metros y la proa a 3820 metros, separadas una de la otra una distancia de unos 3,5 km. Tras la extracción de esas 14 000 toneladas de fuel restantes en 2004,25​ aún quedaron restos adheridos a las paredes del pecio que fueron imposibles de quitar, unas 700 toneladas en la popa y entre 300 y 400 toneladas en la proa.28

Cronología posterior (2002 y 2003) (Extracto)

Voluntarios, la “marea branca”.

Noviembre de 2002

El presidente francés y el alemán, Chirac y Schröder, pactan una serie de medidas para acelerar la prohibición de los petroleros monocasco.

  • 23 de noviembre: La mancha principal surgida tras el hundimiento se sitúa a 150 km de la costa y avanza en dirección este-noreste; algunas manchas superan el cabo Ortegal y entra en el Cantábrico. La recogida de fuel en las costas alcanza las 900 toneladas, una labor asistida por los buques anticontaminación Rijn Delta —neerlandés—, Ailette y Alcyon (franceses). La prohibición de las actividades pesqueras mantiene en puerto a 2500 barcos, 6000 marineros y 800 mariscadores.
  • 24 de noviembre: La zona afectada por la marea negra supera los 400 km de costa.
  • 25 de noviembre: La zona afectada representa ya unos 600 km de costa —136 playas—. La gran mancha de fuel está a unos 110 km y dividiéndose en dos. Llegan las primeras manchas a Asturias y la prohibición de pescar se amplia a toda la costa entre Cedeira y Riveira.
  • 26 de noviembre: La marea negra entra en Parque natural de Corrubedo. El fuelóleo avanza paralelo a la costa cantábrica hacia el Noreste.
  • 28 de noviembre: La marea negra afecta ya a ocho espacios naturales protegidos: Betanzos-Mandeo en la Ría de Betanzos, Carnota-Monte Pindo, Corrubedo, Golfo Ártabro, Costa de la Muerte; Costa de Dexo-Serantes; Estaca de Bares y Monte y Lagoa de Louro.
  • 29 de noviembre: La gran mancha está a 7 km de Finisterre según Leiro Lois, a 22 km según el diario El Mundo;29​ y a 20 km de la entrada de las rías de Muros y Noya. Se comprueba que siguen saliendo nuevas bolsas de fuel del barco hundido. Hay siete buques anticontaminantes operando entre Finisterre y la ría de Arosa, todos extranjeros ya que España no contaba con ningún barco de este tipo.nota 6​ Ya hay recogidas 3000 toneladas de fuel en alta mar y otras 5000 en tierra.
  • 30 de noviembre: La mancha de fuel ya está a 1 milla de Finisterre, mientras toda Galicia se pone en alerta máxima.

Emblema de la Plataforma Nunca Máis basado en la bandera gallega petroleada.

Diciembre de 2002

Más de 200 000 personas (150 000 según la policía) se manifiestan en Santiago de Compostela bajo el lema “Nunca máis”, convocados por la plataforma ciudadana del mismo nombre.

  • 3 de diciembre: Se prohíbe la pesca y el marisqueo hasta la frontera con Portugal.
  • 4 de diciembre: La ría de Arosa está afectada por completo y el fuelóleo llega a la boca de las rías de Pontevedra y Vigo, a pesar de que Mariano Rajoy había pronosticado el 21 de noviembre que «la marea no va a llegar a las Rías Bajas». Los marineros forman un frente contra el fuel, que recogen del mar con todos los medios posibles, hasta con las propias manos.nota 7​ Participan en esta operación unos 800 barcos y más de 7000 personas.

La marea negra afecta ya a toda la costa gallega desde Ortigueira a Bayona, y amenaza las costas del País Vasco, Francia y Portugal. La prohibición de pescar alcanza a 913 km de costa entre Cedeira y Portugal —de los 1121 km de costa gallega en total—. Ya hay recogidas 10 300 toneladas de fuel.

Se confirma que la proa hundida del barco presenta varias fugas por las que escapa fuel de forma continua, a pesar de que el Gobierno seguía negando la existencia de grietas importantes en el casco y la presencia de nuevas manchas en la zona del hundimiento. El día siguiente envió un barco anticontaminación a ese punto.

  • 6 de diciembre: Entre 10 000 y 20 000 voluntarios de toda España, coincidiendo con el puente de la Constitución, ayudan en la lucha contra la marea negra junto a vecinos, marineros y mariscadores.

2003

Marea negra

Voluntario limpiando la marea negra del Prestige en Mugía.

Las primeras declaraciones oficiales pretendían minimizar la catástrofe evitando utilizar la palabra ‘marea’ y hablar solo de un vertido, asegurando además que el hundimiento no tendría graves efectos sobre el medio ambiente. Estas valoraciones fueron matizadas después por el presidente del Gobierno, José María Aznar, el 10 de diciembre, cuando admitió que el ejecutivo había cometido «errores de apreciación».

La realidad es que en las primeras 20 horas tras el accidente, el Prestige vertió al mar entre 10 500 y 21 000 toneladas,37​ y que siguió echando fuelóleo durante todo su recorrido frente a la costa hasta el momento de su hundimiento. Este primer vertido ―el que se produjo antes de su hundimiento― provocó una marea negra a partir del día 16, que afectó a 190 km de costa de la provincia de La Coruña: Mugía, Camariñas, Corme y Lage; pero especialmente Malpica, Roncudo y Touriñán.

Una vez que el barco ya había naufragado se produjo un nuevo vertido, estimado en 10 000 toneladas, que provocó una segunda marea negra. Esta llegó a la costa a partir del 29 de noviembre, hasta el 10 de diciembre, y afectó desde Mugía hasta las Islas Cíes, aunque sobre todo al parque nacional de las Islas Atlánticas a partir del día 4 de diciembre. Las Rías Bajas se salvaron de esta marea.

Un cambio en la dirección de los vientos dirigió hacia el norte las manchas, así como las que seguía liberando el pecio, unas 125 toneladas diarias, para dar lugar a una tercera marea negra que afectó a las costas de las Rías Bajas y la Costa de la Muerte entre el 6 de diciembre y el 8 de enero. Esta gran mancha, más o menos fragmentada, superó la costa occidental gallega a partir del 23 de diciembre adentrándose en el Cantábrico, por lo que los primeros restos de chapapote llegaron a Cantabria el 4 de diciembre; y a Asturias y País Vasco el 6 de diciembre. Francia comenzó a sufrir los efectos de la marea negra el 31 de diciembre.

El volumen definitivo del fuel vertido se estimó en 63 000 toneladas, pero lo cierto es que las cifras que las autoridades iban ofreciendo en los medios de comunicación fueron muy dispares e incluso contradictorias, aumentando según se iban conociendo mejor los hechos y admitiendo la gravedad del accidente.

Sntiago Martín Criado, perito del juzgado de Corcubión, presentó en 2008 las siguientes valoraciones del fuel que vertió el barco: 23 500 toneladas las primeras horas, hasta el momento de iniciarse el remolcado la madrugada del 14 de noviembre; 18 870 toneladas durante el viaje entre el 14 y el 19, a razón de unas 130 toneladas/hora; 12 150 toneladas durante la ruptura y el hundimiento, procedentes principalmente del tanque central número 4; 8000 toneladas desde el momento del naufragio hasta que comenzaron las labores de recuperación en 2004; y 13 700 toneladas recuperadas por las bolsas lanzaderas de Repsol. Estima finalmente que el resto que pudo quedar en los tanques del pecio se puede cifrar en 700 toneladas.38

Impacto medioambiental

Un voluntario intenta limpiar el chapapote adherido en una roca de la playa.

Las consecuencias del vertido sobre los ecosistemas gallegos fueron estudiadas por diferentes organismos oficiales, universidades y colectivos ecologistas. El sector más estudiado fue el correspondiente a la avifauna, tanto por ser el más conocido antes y después del accidente, como por la menor sensibilidad social y mediática que se percibe sobre otro tipo de fauna, como sería el plancton y los invertebrados marinos.

Impacto sobre las aves

El arao fue una de las aves más afectadas por la marea negra.

Según la ONG Sociedad Española de Ornitología,39​ hasta el 31 de agosto de 2003 se recogieron un total de 23 181 aves en España, Portugal y Francia después del vertido, que pertenecían a más de 90 especies. En la costa española se recogieron 19 510 aves, un 84,16 %; de las cuales 12 223 fueron en Galicia —un 52,73 % del total—, 3533 en el País Vasco, 2767 en Asturias y 987 en Cantabria. En Francia se recogieron 2831 y en Portugal 840. Teniendo en cuenta que las experiencias en otras mareas negras calculan que se recogen entre el 10 y el 20 % de las aves realmente muertas a causa del fuel, se puede estimar que el número de aves afectadas por el vertido del Prestige osciló entre 115 000 y 230 000 aves. La Sociedad Gallega de Ornitología publicó en noviembre de 2005 un informe en el que aportaba las siguientes cifras: entre 150 000 y 250 000 aves muertas según unas fuentes,40​ y entre 250 000 y 300 000 según otras.41

La especie más común fue, con diferencia, el arao común (Uria aalge), con 11.802 aves, que representó el 51 % del total de aves recogidas y el 52,5 % de las recuperadas. Otras especies afectadas fueron el alca común (Alca torda), y el frailecillo atlántico (Fratercula arctica); cada uno aproximadamente un 17 % de las aves petroleadas que se recogieron.

Impacto sobre las tortugas y mamíferos marinos

No se ha podido cuantificar lo suficiente el impacto que pudo tener la marea negra sobre los animales marinos presentes en las costas afectadas, como son las tortugas marinas, los cetáceos o las focas, pero es cierto que se observó un considerable aumento de los varamientos de cetáceos, muchos de ellos con la piel manchada de fuel. El número total de animales varados en la costa entre el 13 de noviembre y el 13 de enero fue de 128 animales: 54 cetáceos entre delfines comunes, delfines listados, delfines mulares y marsopas, de los que 32, el 60 %, tenían restos de fuel; cuatro focas, todas con fuel; siete nutrias, también manchadas y 63 tortugas, Caretta, 54 de ellas con fuel. Sin embargo, en el mismo periodo del año anterior solo había habido 30 varamientos, aunque la ONG CEMMA, que publicó estos datos, también señaló que las condiciones meteorológicas fueron especialmente duras ese año.42

Impacto sobre las actividades pesqueras

Tampoco quedó cuantificado el efecto de la marea negra del Prestige sobre las actividades pesqueras y marisqueras, así como sobre el resto de las actividades económicas relacionadas directa o indirectamente con el mar.

El 18 de noviembre de 2002 se decretó la prohibición de las actividades pesqueras y marisqueras en la costa más afectada por el vertido, prohibición que fue ampliándose en los días siguientes. Solo tres meses después se comenzó a levantar la prohibición, también gradualmente, hasta que fue permitida en toda la costa el 15 de septiembre de 2003.

Para compensar este paro forzoso, la Junta de Andalucía aprobó inmediatamente una línea de ayudas para los marineros, que incluía un subsidio de 1200 euros mensuales y 18 000 euros para los armadores de los arrastreros, sin restricciones, mientras duraba el cierre forzoso.

Impacto sobre la salud

Monumento a los voluntarios en El Grove.

El fuel vertido por el Prestige contenía agentes tóxicos, cancerígenos e irritantes, principalmente hidrocarburos aromáticos, que representaban un 46,4 % de la masa de la carga, junto con un 19 % de hidrocarburos saturados y un 34,7 % de resinas y asfaltenos.43​ Cabe destacar que el CEDRE informó de una composición diferente calculada sobre una muestra recogida del propio Prestige el 18 de noviembre: 37,6 % de hidrocarburos aromáticos, 48,5 % de hidrocarburos saturados, 8,3 % de resinas y 5,6 % de asfaltenos.44​ Los hidrocarburos aromáticos poseen un conocido efecto nocivo sobre la salud y, en el caso de este vertido, a dos marineros que participaron en las labores de limpieza del fuel. Además, el fuel del Prestige contenía un 6,18 % de metales pesados: cobre, mercurio, cadmio, etc.; y más de un 2 % de azufre.

Otro aspecto en este sentido fue el control de la posible contaminación del pescado y el marisco por hidrocarburos. La Junta de Galicia realizó numerosos controles analíticos sobre estos productos en las industrias y en el mercado, con el objetivo de asegurar la salubridad de los alimentos de origen marino comercializados tanto en Galicia como en el resto de España.

En octubre de 2003, la Agencia Española de Seguridad Alimentaria publicó un informe con los resultados de las 40 915 inspecciones realizadas en España hasta el 13 de octubre,47​ de los que 33 105 se llevaron a cabo en Galicia —un 80,9 % del total—. El 30 de octubre el SERGAS informó que se habían hecho 41 938 inspecciones y 870 análisis en peces, moluscos y cefalópodos, siempre con resultados favorables, en establecimientos de venta. Concluyó que «Los productos del mar procedentes de las zonas afectadas por la marea negra del Prestige, que se ponen a la venta en mercados y establecimientos comerciales, están en buen estado, son inocuos para la salud y se pueden consumir con total garantía de seguridad y absoluta confianza». También la Universidad de La Coruña hizo exámenes y detectó la presencia de niveles peligrosos en algunos de los productos de pesca analizados entre enero y marzo, pero en esos momentos estaba prohibida la pesca.48

A día de hoy aún no se ha hecho un estudio completo sobre los efectos del fuel sobre la salud de los voluntarios, menos aún sobre los posibles efectos a largo plazo.

Impacto social

Un grupo de voluntarios.

Una de las imágenes más representativas de la catástrofe del Prestige es la labor de los voluntarios en la limpieza de las playas y en la recuperación de aves petroleadas a lo largo de toda la costa afectada. Las autoridades contabilizaron unas 115 000 personas, así como 327 476 participaciones en tareas de limpieza por persona y día, entre noviembre de 2002 y julio de 2003. Estas acudieron de forma espontánea u organizada desde toda Galicia —55 000— y del resto de España; unos 1000 voluntarios eran extranjeros. Otras fuentes elevan la cifra de voluntarios 200 000 voluntarios49​ o incluso 300 000.

A esta cifra habría que sumar los marineros y mariscadores que recogieron gran parte del fuelóleo vertido en el mar; los militares que se desplegaron en la zona, unos 32 600,50​ y que además de participar en las tareas de limpieza ayudaron a los voluntarios al repartir unas 25 000 raciones de comida y 8300 mantas;nota 9​ y los contratados por TRAGSA para continuar con los trabajos.

Consecuencias políticas

Pancarta de “Nunca Máis” en la fachada de la casa consistorial de Pontevedra.

La magnitud de la catástrofe y la discutida gestión de la misma por parte de las autoridades competentes hicieron que en toda Galicia se multiplicasen las reacciones de indignación ciudadana en los actos de protesta, fundamentalmente, contra el gobierno del Partido Popular en Galicia y en España; toda las manifestaciones convocadas tenían como lemas comunes la crítica a la gestión del PP y pedían las dimisiones y asunción de responsabilidades de las autoridades gallegas y nacionales, en manos del PP. En Aguiño, el 3 de diciembre, José Luis Torres Colomer, presidente de la Diputación de La Coruña, y Xesús Alonso Fernández, alcalde del Partido Popular de Boiro, fueron recibidos con puñados de chapapote lanzados por los marineros. Quizás la única reacción contra alguien fuera del PP fue el lanzamiento de huevos a Zapatero durante la manifestación de Santiago del 1 de diciembre.

Siete de los once mayores vertidos de fuel europeos en los últimos 30 años habían sucedido frente a las costas gallegas, como el Polycommander en 1970 que vertió 35 000 toneladas de fuel, el Urquiola en 1976 con 100 000 toneladas, el Andros Patria en 1978 con 50 000 toneladas o el Aegean Sea en 1992 con otras 79 000, por citar los más significativos; que sumaban más de 300 000 toneladas de fuel vertidas en las costas gallegas.52

Pero en los primeros meses hubo muchas más en diferentes puntos de Galicia, acompañadas de numerosas pintadas, pancartas exigiendo dimisiones, crespones negros en las ventanas, pegatinas en los coches y sobre la ropa, coplas y disfraces en el Entroido de 2003, etc. Por otro lado, diferentes colectivos culturales, como la plataforma de intelectuales y artistas Burla negra o los artistas gráficos de Colectivo Chapapote, entre otros, organizaron numerosos eventos como conciertos solidarios, exposiciones o lecturas públicas. Los humoristas dejaron su particular visión de los hechos.

Una de las mayores críticas a la gestión de la crisis se hizo contra los intentos de minimizar el volumen vertido y sus consecuencias.

En este sentido, en la crónica de lo sucedido ya se relataron diferentes declaraciones públicas de las autoridades, a las que se puede añadir la que hizo Mariano Rajoy comparando las 125 toneladas que vertía el pecio con «hilillos de plastilina»,54​ que resultó ser la forma con la que los expertos del batiscafo Nautile explicaron la situación a los políticos implicados.5556

Lo cierto era que, en esas fechas, el volumen de fuelóleo vertido desde el fondo del mar por los restos del Prestige ascendía a unas 125 toneladas diarias. Fue a partir del 22 de diciembre cuando el Nautile comenzó a sellar las grietas, unas totalmente y otras parcialmente, y no acabó hasta finales del febrero siguiente. Cuando en 2004 se terminó de vaciar el pecio, las pérdidas quedaron reducidas a 20—50 litros diarios.

Otra de los puntos críticos tuvo que ver con la censura informativa que se impuso en los medios de comunicación públicos, así como la ejercida sobre los funcionarios a quienes se les prohibió cualquier declaración a los medios. El 13 de diciembre, el Comité de Trabajadores de TVE, RNE y RTVE publicó un comunicado.

De forma paralela, la Junta de Gobierno del Colegio Profesional de Periodistas de Galicia también denunció el silencio informativo decretado por las Autoridades.

Una tercera crítica que se hizo al Gobierno fue la ausencia de las autoridades en la zona del vertido, lo que se interpretó como una muestra de desinterés por la situación que estaba pasando Galicia.

En cualquier caso, Mariano Rajoy sobrevoló la costa petroleada el 19 de noviembre, y dio una rueda de prensa en Cayón, donde afirmó que «Las cosas se han hecho razonablemente bien».61Miguel Ángel Cortizo, del PSOE, y Beiras, del BNG, habían acudido en la mañana del día 14.

El presidente Aznar no se acercó a Galicia hasta el 14 de diciembre, pero en un viaje de tan solo 3 horas, limitándose a visitar la Torre de Control de Tráfico Marítimo de La Coruña bajo fuertes medidas de seguridad y, de regreso, sobrevolar las islas Cíes y la zona del hundimiento. Quiso justificar esos dos meses de retraso diciendo que «Dije que no vendría a hacer fotos oportunistas, sino a traer soluciones, y estoy en condiciones de hacerlo».

Pero, quizás, la crítica más grave fue que la gestión que las autoridades hicieron del naufragio, desde el mismo momento del accidente, fue que agravó sustancialmente la dimensión de la catástrofe, tanto por la carencia de medios ante una marea negra de este calibre, como por la desorganización, improvisación y descoordinación que hubo en todo el proceso.

Por último, el rumbo errático que siguió el petrolero remolcado, y el desconocimiento de los vientos y corrientes dominantes de nuestro mar, sorprenden por la gran ineptitud alcanzada por el responsable de dar órdenes.

Colectivo de Geógrafos de la Universidad de Santiago de Compostela65

Con todo, no hubo en ningún caso asunción de responsabilidades políticas ni de errores cometidos en la gestión de la catástrofe. No hubo ceses ni dimisiones y, salvo el director general de la Marina Mercante José Luís López Sors, que resultó imputado, todos continuaron con sus respectivas carreras políticas con mayor o menor éxito.

Consecuencias electorales

En las elecciones locales siguientes en mayo de 2003, el Partido Popular repitió sus buenos resultados en la Costa de la Muerte, pero en las siguientes elecciones autonómicas del año 2005 perdió la mayoría absoluta. También había perdido con anterioridad las elecciones generales de marzo del 2004.

Plan Galicia

Como medida para reparar el daño causado, el Gobierno español aprobó un plan especial de reactivación económica, el “Plan Galicia“, que preveía una inversión de 12 459 millones de euros.

Tras la derrota del PP en las elecciones de 2004, la denominación de “Plan Galicia” fue abandonada por el nuevo Gobierno, que la tachaban de ser propaganda partidista.

Limpieza

La organización de la limpieza fue asumida por los concejos, las cofradías de pescadores, directamente o en colaboración con colectivos ecologistas o civiles, y posteriormente por la Junta de Galicia a través de la empresa de capital público TRAGSA. Las labores de limpieza alcanzaron el fuelóleo vertido tanto en el mar como en las costas y el que quedó en el barco hundido; también hubo que limpiar multitud de aves petroleadas.

El éxito de la campaña de limpieza se debió, aunque con discrepancias, al esfuerzo de los voluntarios, marineros y a la Administración, que consiguieron que en el verano siguiente el fuel solo afectase significativamente a la costa comprendida entre Corrubedo y Cabo Ortegal. EL 7 de marzo, Mariano Rajoy declaró que «Confiamos en que el próximo 1 de julio las playas recuperarán la normalidad». El 1 de junio de 2013 el Gobierno cuantificaba en 12 de 702 las playas en las que seguía existiendo fuel;71​ añadir que para esta fecha ya se habían limpiado 674 000 m² de zonas rocosas y quedaban por limpiar otros 293 000 m². Sin embargo, un estudio de la situación de la costa en agosto arroja la cifra de 135 playas españolas afectadas por el fuel.72

Máquinas hidrolimpadoras en unas rocas de Lage.

Durante el verano de 2003, el entonces consejero de Medio Ambiente Xosé Manuel Barreiro califica como datos positivos la concesión de Banderas Azules en playas gallegas, pues ese año se recibieron 57, solo seis menos que el año anterior. Añadir que el 98 % de las playas estaban recuperadas.73​ Un año más tarde Galicia consiguió 24 banderas azules más, alcanzando un total de 81 playas en 32 localidades distintas; la Costa de la Muerte recuperó todas sus banderas y consiguió cuatro más. En ese verano Cataluña ostentaba 90 banderas y Valencia 87.74

El problema no resuelto era el fuel en las zonas rocosas y en el fondo del mar. En noviembre de 2004, cuando se dieron por terminadas las labores de hidrolimpieza —tras 20 meses de trabajo— aún quedaban 66 000 m² de costa con restos de fuel, en la Costa de la Muerte —60 000 m²— y en las islas Atlánticas —6000 m²—. En esas fechas, la cantidad de chapapote que se recogía en tierra era tan solo de 20—30 kg diarios, frente a las tres toneladas diarias que se recogían en los seis meses anteriores.75

No obstante, distintas prospecciones realizadas en el fondo marino confirmaron la presencia de fuel, en ocasiones enterrado bajo los sedimentos. Todo este fuel acumulado en el fondo del mar, bajo la arena o formando placas superficiales, termina constituyendo formaciones más o menos esféricas que, tiempo después, son expulsadas a la costa por el mar de fondo en forma de bolas compactas de chapapote.

Todo el fuel que se fue recogiendo desde el primer momento, unas 90 000 toneladas en total, fue depositado en balsas construidas a tales efectos en Somozas —60 000—, Cerceda —20 000— y en otros puntos —10 000 toneladas—. La mayor parte fue trasladada a las instalaciones de la Sociedad Gallega de Residuos Industriales S.A., en Somozas para su inertización, operación para la que el Gobierno dedicó 24 millones de euros. Diez años después, aún permanecían sin tratar unas 10 000 toneladas en los depósitos de la empresa, a la espera que los gobiernos estatal y gallego acordasen quien tenía que pagar los 3 millones de euros que costaría su tratamiento.78

Limpieza del pecio

El Prestige se hundió conservando unas 13 700 toneladas en los tanques que se mantenían intactos. Ese fuelóleo representaba un peligro tanto por el vertido que se producía en las grietas, que fueron parcialmente selladas en el año 2003, como por nuevos vertidos en el futuro tras la previsible corrosión del casco. El Nautile confirmó la salida del fuel desde las primeras inmersiones, algunas de ellas de grandes dimensiones. Así, el 4 de diciembre se descubrió una a través de una escotilla de 1 metro de diámetro —aun así, el día 5, Rajoy describió las fugas como «cuatro pequeños hilillos»—. En los días sucesivos se fue detectando nuevas fugas en todos los depósitos, hasta contabilizar un total de 26 fugas el día 25 de diciembre, por las que se vertían entre 125 y 150 toneladas diarias. El mismo Nautile comenzó a sellar estas fugas el día 13, fecha en la que tapona la primera; el día 22 se habían sellado ya 5 fugas, pero los responsables de esta operación advirtieron desde el primer momento que se trataba de una solución provisional que no aguantaría más que unos meses.

Lanzaderas con las que se produjo la extracción de fuel del pecio en el verano de 2004.

Para evitar este vertido continuo que podía prolongarse a lo largo de los años, el Gobierno contrató a Repsol para que extrajese el fuel de una forma segura y definitiva. El operativo de limpieza se inició en junio de 2004 se dio por finalizado en octubre.

Para llevar a cabo este trabajo se diseñaron cinco grandes bolsas lanzaderas de aluminio extruido, de 23 por 4,7 metros y una capacidad de 300 m³. Cuando se terminó el proceso de extracción, cuando solo quedaban unas 1000 toneladas de fuel adheridas a las paredes del casco, se selló el contenido con bacterias para potenciar el proceso de biodegradación que terminará por destruir todo el fuelóleo.79

En la operación intervinieron también los remolcadores Esvagt Observer, Golfo de Siam, Sertosa 14 y Punta Tarifa. El coste de las labores de limpieza ascendió a 100 millones de euros. El fuel recuperado se depositó en las instalaciones de Repsol en La Coruña en espera de la decisión de los jueces.

Los tres tanques lanzadera que quedaron fueron depositados en octubre de 2004 en el puerto de Villagarcía de Arosa, de donde fueron retiradas el 2 de octubre de 2012 con destino a la base que Salvamento Marítimo posee en Fene.

Apostolos Mangouras

El capitán griego del Prestige, Apostolos Mangouras, fue evacuado del barco y detenido a su llegada al aeropuerto de La Coruña. Fue acusado de desobediencia a las autoridades españolas y de delito ecológico. El Gobierno español le acusaba de haber obstaculizado las labores de remolque, y de obedecer a su armador antes que a las autoridades españolas.

El capitán del Prestige pretendía fondear el barco a unas cuatro millas de la costa, a una profundidad en la que podía largar anclas. Su objetivo era salvar la carga y el buque. Las autoridades españolas no le permitieron acercarse a la costa, obligándole a ser remolcado. La resistencia de Mangouras, que advirtió que el buque se rompería si era expuesto a un oleaje más duro, está en el origen de su encausamiento.85

Mangouras ha recibido varios homenajes por parte de otros marinos. Fue candidato a “Marino del Año” en 2003, premio otorgado por el Naval Institute de Londres y por la revista marítima Lloyds, y homenajeado por compañeros de la Marina Mercante. Se quejan de que el Gobierno español lo utilizó como chivo expiatorio.86

Los juicios

El capitán Apostolos Mangouras declara durante el juicio.

El juicio en Estados Unidos

El Estado español presentó el 16 de mayo de 2003 una demanda contra la sociedad de clasificación del barco, la American Bureau of Shipping (ABS), ante los tribunales estadounidenses —la sede de la empresa está en los Estados Unidos—, a la que se le exigía una indemnización de 1000 millones de euros. La empresa fue la que asignó el certificado de navegabilidad al buque, que se encontraba en unas condiciones negligentes e imprudentes —véase la sección «Causa del accidente»—, y las revisiones del buque ni siquiera se habían hecho de acuerdo con las normas internas de ABS.

En 2010, la demanda fue desestimada. ste proceso en los tribunales estadounidenses le costó a España más de 30 millones de euros.

El juicio en España

Tras una instrucción que duró nueve años —de noviembre de 2002 a noviembre de 2011– y en la que participaron directamente cinco jueces, el juicio se inició el 16 de octubre de 2012 en la Audiencia Provincial de La Coruña. En el banquillo de los acusados se sentaron los mandos del buque, el capitán Apostolos Mangouras y uno de sus hombres —otro, también acusado, estaba en paradero desconocido—, y el exdirector de la Marina Mercante José Luis López-Sors.

En octubre de 2010 la Fiscalía presentó el informe pericial definitivo, que elevó a 4442 millones de euros la indemnización exigible, correspondientes a los daños directos e indirectos de la marea negra, esto es, los daños de bienes e intereses privados y el impacto medioambiental sobre intereses públicos, de carácter más difuso.909192

Fue el sumario de la mayor causa jamás instruida en España por delito medioambiental, y contaba con 230 315 folios. El ‘macrojuicio del Prestige’, como se le denominó, tuvo que celebrarse en el recinto ferial de La Coruña debido a sus dimensiones: 2128 partes personadas, 204 declaraciones, 133 testigos, 98 peritos, 51 abogados, 21 procuradores y 3 jueces —Juan Luis Pía Iglesias, Salvador Sanz Crego y María Dolores Fernández Galiño— que celebraron 400 horas de juicio en 89 sesiones.95

Acusación

Se acusó al capitán del barco, Apostolos Mangouras; el jefe de máquinas, Nikolaos Argyropoulos; a Ireneo Maloto, otro mando del buque en paradero desconocido; y al exdirector de la Marina Mercante José Luis López-Sors, el único cargo público imputado. El Ministerio Pública de España también presentó como responsables civiles a la propietaria del barco Mare Shipping, de Liberia, y a la armadora Universe Marine de Grecia.

Al exdirector de la Marina Mercante, José Luis López-Sors, le imputó la Audiencia Provincial de La Coruña, que consideró que había «indicios racionales de criminalidad» al ordenar que el petrolero pusiera rumbo mar adentro en ese estado y perdiendo fuel. Se consideró que dar esa orden con las condiciones meteorológicas tan malas que había fue «un error clamoroso», como parte de una gestión muy desacertada.97

Inicialmente hubo otros dos altos cargos imputados, Arsenio Fernández de Mesa, entonces delegado del Gobierno en Galicia, y Ángel del Real, capitán marítimo de La Coruña, pero fueron exculpados por la misma Audiencia Provincial en febrero de 2003.

Los daños ambientales que se tuvieron en cuenta fueron los más de 1600 kilómetros de costa española, desde la desembocadura del río Miño hasta la frontera con Francia, y los causados en la costa francesa, pues el Estado español asumió la representación de los intereses de Francia como acusación en el proceso.98

Informes

El gobierno de la Junta de Galicia, del Partido Popular de Galicia, solicitó un informe a la Universidad de Santiago de Compostela, La incidencia socioeconómica del Prestige en Galicia.99​ En el plano político, este estudio fue bien recibido por las partes afines al Gobierno regional.100

El 8 de enero de 2009 el informe de la Abogacía del Estado defiende la decisión, por parte del Gobierno de José María Aznar, de alejar el buque de la costa gallega como la más acertada, así como su respuesta inmediata que permitió a pescadores y mariscadores gallegos minimizar los costes de la marea negra, siendo la recuperación ambiental casi un hecho.101​ Esta decisión no estuvo exenta de polémica, ya que la juez Carmen Vieirias afirma que “basó su decisión en la contundente defensa del alejamiento que realizó Martín Criado”. Martín Criado fue el perito contratado para investigar el accidente, pero también fue uno de los asesores y defensores de Fomento durante el accidente.102​ Este hecho fue criticado por algunas asociaciones como Nunca Máis.103

Instrucción judicial

La Herida—, escultura de Alberto Bañuelos-Fournier, de 400 toneladas de granito, en Mugía.

Fue en el Juzgado de Primera Instancia e Instrucción Número 1 de Corcubión donde desde el mismo día del accidente se instruyeron todos los procedimientos judiciales que fueron sometidos a juicio oral en la Audiencia Provincial de La Coruña años más tarde.

El 20 de marzo de 2009, siete años después del accidente, se hizo pública la conclusión del procedimiento judicial abreviado del caso, que suponía la exculpación de los responsables del Ministerio de Fomento al concluir que no hubo responsabilidad alguna en el accidente.104

Sin embargo, José Luis López-Sors acabó imputado debido a un recurso posterior a este auto.105

Sentencia

El 13 de noviembre de 2013, tras nueve meses de juicio, la Audiencia Provincial de La Coruña resolvió la causa sin culpables, pues ninguno de los acusados fue encontrado culpable de delito ecológico.106​ Se condenó al capitán del barco, Apostolos Mangouras, por un delito de desobediencia grave a las autoridades españolas durante las operaciones de rescate, que le supuso una condena a nueve meses de cárcel por la que nunca entró en prisión.106​ Los otros dos miembros de la tripulación fueron exculpados, pues según la sentencia no habían actuado «ni con imprudencia, ni de forma dolosa al asumir una navegación arriesgada».106​ Por último, el fallo judicial avaló la orden del exdirector de Marina Mercante José Luis López-Sors de llevar mar adentro el navío tras el siniestro, y le absolvió de toda culpa.106​ Con esta última exculpación, el Estado español quedó libre de toda culpa penal y civil, ya que López-Sors fue el único representante de la Administración imputado en el juicio.106

Sin embargo, la Audiencia de La Coruña sí que consideró probado que el petrolero estaba en tan malas condiciones que nunca tendría que haber obtenido los permisos para navegar, y dictaminó que «solo se podrá exigir la oportuna responsabilidad civil» por la catástrofe a la clasificadora American Bureau of Shipping (ABS) y a la armadora Universe Maritime, que las autoridades españolas no consiguieron enjuiciar106​ —véase «El juicio en Estados Unidos»—; por aquel entonces la ley no contemplaba exigirle responsabilidad penal alguna a personas jurídicas por delitos económicos, lo que imposibilitó llevarlas a juicio.107​ De hecho, la fiscalía valoró después de la citada sentencia el volver a intentar enjuiciar a dicha sociedad de clasificación.108

Así pues, puesto que no existió responsabilidad penal alguna por parte de los acusados, nadie tenía que asumir la responsabilidad civil; no existía un responsable civil a quien pedir el pago de los daños de la catástrofe, unos 4300 millones de euros.107111nota 10​ La única indemnización que se pagó fueron los 171 millones que le correspondían a los afectados del FIDAC ,107​ así como los 22 millones de euros que depositó la aseguradora del barco como fianza civil antes del juicio.111

Reacciones

Como resultado del proceso judicial las opiniones sobre éste fueron muchas y muy diversas. Sin embargo, sí que hubo una opinión muy repetida: ni siquiera se había llevado a juicio a los verdaderos responsables. De hecho, la propia sentencia dictamina que de poder exigirle la responsabilidad a alguien, esta debía ser de la sociedad de clasificación que le dio al buque los permisos para poder navegar, la American Bureau of Shipping.

Los más críticos con la sentencia judicial fueron los partidos políticos de la oposición y los grupos ecologistas.112​ Así, el PSOE calificó de ‘vergüenza’ que ningún cargo político fuese hallado culpable,113​ opinión que también compartía el BNG.114​ Sin embargo, el PP se tomó la sentencia como un aval de que la gestión que habían hecho sus responsables políticos del desastre fue la «correcta y adecuada».115

Los expertos en derecho marítimo se mostraron ‘satisfechos’ con la sentencia, en tanto y cuanto aplicaba lo dispuesto por el derecho internacional en este tipo de casos, así como por los acuerdos internacionales en la materia suscritos por España.118

Pero, a pesar del revuelo mediático que causó la sentencia, las poblaciones más afectadas se mostraron más bien indiferentes y se limitaron a calificar el juicio de una pantomima mediática:119120​ las playas ya estaban limpias y muchos de los afectados ya habían cobrado sus respectivas indemnizaciones a cambio de que el Estado litigase por ellos en el juicio. Sea como sea, la Fiscalía y el Estado francés decidieron recurrir la sentencia con un recurso de casación con el principal objetivo de que se valorara el delito ecológico.122

Desastre del Exxon Valdez

Desastre del Exxon Valdez

Coordenadas: 60°50′24″N 146°51′45″O

El Exxon Valdez tres días después de haber encallado

 Suceso: Naufragio y desastre medioambiental

Fecha: 24 de marzo de 1989

Causa: Encallamiento del petrolero Exxon Valdez

Lugar: Prince William Sound, Alaska

 

Implicado

Operador: Exxon Shipping Company

Ruta del petrolero desde la terminal al accidente extraida de http://www.maritime-executive.com

El desastre del Exxon Valdez fue un derrame de petróleo provocado por el petrolero Exxon Valdez tras encallar el 24 de marzo de 1989,1con una carga de 11 millones de galones / 41 millones de litros de crudo, en Prince William Sound, Alaska, vertiendo 37.000 toneladas de hidrocarburo.

Alaska vivió la peor tragedia ecológica de su historia, al encallar el petrolero y verter millones de litros de crudo que se expandieron sobre más de 2000 kilómetros de costa. Para la limpieza de la marea negra se utilizaron aspiradores, mangueras de agua caliente a presión, se trasladó el crudo que aún contenía el Exxon Valdez a otro petrolero. Los daños a la fauna que se produjeron en esta zona aún se siguen estudiando.

El vertido condujo a la aprobación de una nueva legislación medioambiental en los Estados Unidos (Oil Pollution Act 1990).

Características del buque

  • Desplazamiento: 214.862 Tn
    ● Eslora: 301 m
    ● Manga: 51 m
    ● Calado: 20 m
    ● Propulsión: Un Motor Diésel Marino Sulzer de baja velocidad reversible de ocho cilindros.
    ● Potencia: 31.650 CV (23 601 kW) a 79 rpm
    ● Velocidad: 16,25 nudos
    ● Tripulación: 21 tripulantes
    ● Capacidad: 1,48 millones de barriles (235.000 m³) de petróleo crudo
    ● Número OMI: 84145201
    ● Capitán (En el siniestro): Joseph Jeffrey Hazelwood

Datos del accidente

Aves muertas como resultado del derrame de petróleo.

El buque petrolero Exxon Valdez (nombre compuesto formado por las palabras Exxon, empresa petrolera norteamericana propietaria del barco, y Valdez, nombre del puerto con el que operaba) salió de la terminal petrolera Valdez, en Alaska, a las 21:12 h. del 23 de marzo de 1989 (24 de marzo, según la hora local UTC) con destino a Long Beach, California. Uno de los prácticos del puerto guió a la embarcación a través de los Valdez Narrows antes de abandonar la nave y devolver el control a Joseph Jeffrey Hazelwood, capitán del barco. La embarcación maniobró fuera de la ruta, a fin de evitar el choque contra los icebergs. Después de la maniobra y poco después de las 23:00 h., Hazelwood dejó el puente de mando. Dejó al Tercer Oficial de cubierta Gregory Cousins a cargo del puente de mando y a Robert Kagan en el timón, pero estos dos miembros de la tripulación no habían descansado las seis horas que son obligatorias en su trabajo antes de que comenzara su turno de 12 horas. El barco estaba en piloto automático, y usó el sistema de navegación que había sido instalado por la compañía constructora del barco. La vía de salida del barco estaba cubierta por icebergs, así que el capitán, Hazelwood, solicitó permiso de la guardia costera para salir a través de la vía de entrada.

Cuando el Exxon Valdez pasó Busby Island, el tercer asistente ordenó poner el timón a estribor, no advirtió que todavía estaba conectado el piloto automático y el barco no giró. Siguió avanzando por el canal. Dos veces los vigías advirtieron al tercer asistente cuál era la posición de las luces que marcaban el arrecife, pero él no cambió ni verificó sus órdenes anteriores. Por último notó que habían avanzado mucho por el canal, desconectó el piloto automático y se esforzó por volver a encauzar el enorme barco. Demasiado tarde.2

El 24 de marzo de 1989, alrededor de las 00:04 h., el buque petrolero Exxon Valdez golpeó el arrecife de coral conocido como Bligh Reef, situado en el Prince William Sound, en Alaska, y derramó cerca de 10,8 millones de galones de petróleo crudo (alrededor de 40,9 millones de litros).

El incidente puso a prueba la capacidad de respuesta de organizaciones locales, nacionales e industriales ante un desastre de gran magnitud. Muchos factores complicaron los esfuerzos del gobierno y la industria que participaron en la limpieza del derramamiento, entre ellos el tamaño del vertido y su localización remota en el Prince William Sound, accesible solamente en helicóptero y barco. El derramamiento planteó amenazas a la delicada cadena de alimentación en que se apoyaba la industria de la pesca profesional de Prince William Sound. También estaban en peligro diez millones de pájaros y aves acuáticas migratorias, centenares de nutrias del mar y docenas de otras especies de la orilla, tales como marsopas, leones de mar y diversas variedades de ballenas.

Alyeska, la asociación que representa a siete compañías petroleras que funcionan en el puerto Valdez, entre ellas Exxon, fue la que primero asumió la responsabilidad de la limpieza, de acuerdo con la planificación de urgencia del área. Alyeska abrió un centro de comunicaciones de emergencia en Valdez poco después del derramamiento, y las segundas operaciones se centralizaron desde Anchorage, Alaska.

Organizaciones que ayudaron con la limpieza

Junto con Alyeska, hubo 3 organizaciones que prestaron ayuda de forma inmediata.

  • Los especialistas de la EPA (Agencia de Protección Ambiental de los Estados Unidos) en el uso de las tecnologías experimentales de biorremediación asistieron a la limpieza del derramamiento.
  • La NOAA (Administración Nacional Oceánica y Atmosférica) estuvo implicada en el abastecimiento de los partes meteorológicos para Prince William Sound, y permitió que el equipo de limpieza adaptase sus métodos a las condiciones atmosféricas.
  • Los especialistas del Instituto de Marina de Hubbs en San Diego y el Centro Internacional de Investigaciones sobre Aves de Berkeley, California, establecieron un centro para limpiar y rehabilitar aves acuáticas.

Métodos de limpieza utilizados

Limpieza de las orillas de Prince William Sound.

Se probaron cuatro métodos en el esfuerzo de limpiar el derrame:

Éste fue el primer intento de limpieza. El 24 de marzo una compañía aplicó dispersantes con un helicóptero, pero como no había bastante acción de onda para mezclar el dispersante con el petróleo en el agua, el uso de éste fue discontinuo. Entre otros dispersantes se utilizó Corexit 9580 producido por Nalco Holding Company.

  • Limpieza mecánica

La limpieza mecánica fue iniciada luego de terminado el uso de dispersantes químicos, y para ello se utilizaron bombas extractoras y skimmers. Sin embargo, los skimmers no podían ser usados fácilmente luego de 24 horas. Lamentablemente el crudo y las algas terminaron obstruyendo este tipo de maquinarias, con lo que los procedimientos de reparación se convirtieron en una pérdida de tiempo.

  • La quema

Se ordenó una quema durante las primeras horas del derrame. Aislando parte del crudo derramado con material resistente al fuego, esta prueba fue exitosa, pues se logró reducir 113.400 litros de petróleo a 1.134 litros de residuo, pero debido al mal tiempo ya no se intentó ningún otro procedimiento en los esfuerzos de limpieza.

  • Microorganismos

Finalmente, el gobierno estadounidense contrató a Gene Kaizer, un científico experto en agentes antigrasos, quien en compañía de los gemelos Jay y Jack Collins, descubrieron que los microorganismos llamados Arqueas, tienen la capacidad de metabolizar moléculas de hidrocarburos, desintegrando por completo así esta mancha y evitando de esta manera una multa billonaria de parte de Canadá a USA.

Dictámenes finales

Cuando finalmente terminó el juicio civil, en el verano de 1995, se estableció que ExxonMobil Corporation debía pagar cinco mil millones de dólares adicionales por daños punitivos. En su informe final, la Junta Nacional de Seguridad en el Transporte (NTSB) reveló que la falta de sueño y la deuda de sueño habían sido las causas directas del accidente.3

Impacto económico

En 1991, luego del colapso de la fauna marina local (especialmente almejas, arenques y focas), las corporaciones Chugach Akaska, y Alaska Native solicitaron la protección por bancarrota del Capítulo 11 del Código de los Estados Unidos.4

Según varios estudios financiados por el estado de Alaska, el derrame tuvo efectos económicos a corto y largo plazo. Estos incluyeron la pérdida de deportes recreativos, pesca, reducción en el turismo, y una baja en la apreciación de los economistas llaman “valor de existencia”, que es el valor asignado al bien natural de Prince William Sound.5678

La economía de la ciudad de Cordova, en Alaska, se vio afectada negativamente después de que el derrame dañara las reservas de salmón y arenque en el área. El poblado de Chenega se transformó en una base de emergencias y en base para los medios de comunicación. Los habitantes locales tuvieron que hacer frente a la triplicación de su población de 80 a 250.

Desastres marítimos: el petrolero Exxon Valdez

Javier Paredes / 20/11/2018

El estrecho de Price Williams a lo largo de la costa de Alaska, es un lugar de una belleza excepcional con una enorme riqueza natural. En 1973 la sociedad Aleyska eligió la pequeña ciudad de Valdez para la construcción de una terminal de carga de petróleo con destino a los Estados Unidos. El estrecho de Prince Williams se convirtió en paso obligado para petroleros de gran tamaño (VLCC Very large crude carriers) y entre ellos se encontraba el Exxon Valdez.

Imagen del petrolero Exxon Valdez extraida de http://www.aukevisser.nl

El Exxon Valdez

El Exxon Valdez era un petrolero construido en el año 1986 por el astillero National Steel and Shipbuilding para la compañía Exxon Shipping Company, una división de Exxon corporation. En su tiempo fue considerado un  buque moderno de construcción enteramente soldada y diseñado para cumplir los acuerdos de la convención internacional para la prevención de la polución del año 1978. El buque recibió la certificación del servicio de guardacostas estadounidense para el transporte de petróleo y combustibles líquidos, grado B o inferior.

Con sus 300 metros de eslora y con un calado a plena carga de casi 20 metros estaba habilitado para el transporte de casi 1,5 millones de barriles de petróleo por travesía. Su propulsión estaba formada por un motor diésel del fabricante Sulzer de baja velocidad con ocho cilindros y que le permitía alcanzar una potencia de 32.000 BHP manteniendo una velocidad de crucero de 17 nudos a 79 revoluciones. El motor propulsor estaba engranado directamente a una hélice de cinco palas. El buque permaneció en servicio hasta el año 2009 bajo la bandera de la compañía Dong Fang Ocean y fue desguazado en la India en el año 2012.

Imagen del Exxon Valdez extraída de http://www.aukevisser.nl

Hacia el desastre

El Exxon Valdez zarpo a las 21:00 horas del 23 de Marzo de 1989 llevando a bordo al práctico del puerto, que fue desembarcado en el límite de las aguas donde estaban en vigor las normas federales de practicaje. A las 23:25 el capitán del barco, Hazelwood, comunicó a la torre de control de costa que estaba alcanzando la velocidad de crucero (decisión discutida por encontrarse el canal de salida del puerto con enormes bloque de hielo). El capitán para irse a descansar dejo al mando del timón al entonces tercer oficial Cousins y el timonel Kagan, indicándoles que pusieran el piloto automático y mantuvieran el rumbo.

A las 7:00 horas de la mañana Cousins telefonea al capitán con el siguiente mensaje: “Creo que nos encontramos en un gran lio”. El Exxon Valdez se estremecía bajo una serie de sacudidas en unos escollos de los islotes de Bligh. En pocas horas se formó una enorme mancha de petróleo a través de la costa de la Alaska, transformándose en una de las mayores catástrofes ecológicas ocurridas en toda la historia de los Estados Unidos.

Las consecuencias

La manta de petrolero derramada cubrió 1.300 millas de costa matando a cientos de especies marinas como focas, ballenas y pájaros. El petróleo derramado por el Exxon Valdez fue la quinta parte de su carga, pero se extendió, debido a la baja temperatura de las aguas, vientos intensos y mar agitada a través de casi 7000 kilómetros cuadrados de costa (el petróleo derramado fue tres veces superior al derramado por el petrolero Prestige en nuestras costas gallegas). Debido a la dispersión de la población en esos remotos lugares de Alaska, no fue posible iniciar las tareas para frenar la contaminación hasta pasadas doce horas después del accidente, lo que contribuyó a una mayor dispersión de la mancha de crudo.

Imágen de la catástrofe extraida de https://www.gettyimages.es

La compañía Exxon asumió todos los gastos de descontaminación del litoral y realizo una declaración en la cual prometia “resarcir a todos los perjudicados”.

Imágen de la catástrofe extraida de https://www.gettyimages.es

En septiembre del año 1991 se anuncio que la Exxon había satisfecho una indemnización de 150 millones de dólares en concepto de sentencias judiciales y para paliar el coste de los trabajos de descontaminación en las costas de Alaska.

Las responsabilidades

El timonel Kagan era un profesional con 13 años de experiencia en la compañía, con unos informes de evaluación profesional altamente favorables, que indicaban que era competente para recibir órdenes sencillas pero era desaconsejable indicarle trabajos con una elevada complejidad. Lo único achacable fue el haber demorado las órdenes de cambio de rumbo recibidas en exceso.

Las iniciativas del tercer oficial Cousins fueron altamente discutibles ya que retrasó una virada seis minutos y quizás no ordeno con la rapidez suficiente un cambio de rumbo.

El capitán Hazelwood indicó que dio órdenes precisas sobre el rumbo que se debía seguir y se aseguró de que se habían comprendido, entendió que dejaba el buque en unas manos expertas y de confianza pero las posteriores investigación federales pusieron en duda estas afirmaciones.

El 29 de enero del año 1990 el capitán Hazelwood fue demandado por daños y perjuicios y por otros tres cargos: imprudencia temeraria, vertido de petróleo por negligencia y conducción de un vehículo en estado de embriaguez.

En marzo de 1990 fue absuelto de todas las imputaciones salvo la de vertido de petróleo por negligencia y fue condenado a una pena de prisión con libertad condicional, a una multa y a 1.000 horas de trabajos comunitarios.

En el año 1992 y en base a la legislación federal que afirma un capitán que denuncie una fuga de petróleo no puede ser acusado de la misma, fue absuelto de todos los cargos que se le imputaban.

Debido a este accidente el presidente George W Bush impulsó una ley en la cual a todos aquellos petroleros que no dispongan de doble casco, se les prohíbe su navegación por las aguas jurisdiccionales estadounidenses.

Dong Fang Ocean en la actualidad y anteriormente conocido como Exxon Valdez, Exxon Mediterranean, SeaRiver Mediterranean, es un buque petrolero que cobró relevancia tras encallar en la bahía del Príncipe Guillermo derramando 40.900 m³ (257.000 barriles) de petróleo en la costa de Alaska mientras era propiedad de ExxonMobil. Este es el segundo mayor derrame petrolífero de la historia de Estados Unidos y, en 1989, el 54º mayor derrame de la historia. Este accidente ocurrió el 24 de Marzo de 1989.

Alaska vivió la peor tragedia ecológica de su historia al encallar el petrolero y verter millones de litros de crudo que se expandieron sobre más de 2.000 kilómetros de costa. Para la limpieza de la marea negra se utilizaron aspiradores, mangueras de agua caliente a presión, se trasladó el crudo que aún contenía el Exxon Valdez a otro petrolero. Los daños a la fauna que se produjeron en esta zona aún se siguen estudiando. A eso se suma la prevista extinción de algunas especies, como la familia de orcas AT1, una manada genéticamente exclusiva de Alaska llamada a desaparecer al haber muerto todas sus hembras.

El vertido condujo a la aprobación de nueva legislación medioambiental en los Estados Unidos de América (Oil Pollution Act 1990).

Este desastre ocurrió por descuido de los oficiales a bordo y fatiga de los oficiales de guardia en ese momento.

Organizaciones que ayudaron con la limpieza

Junto con Alyeska, hubo 3 organizaciones que prestaron ayuda de forma inmediata.

Los especialistas de la EPA (Agencia de Protección Ambiental de los Estados Unidos) en el uso de las tecnologías experimentales de biorremediación asistieron a la limpieza del derramamiento.

La NOAA (Administración Nacional Oceánica y Atmosférica) estuvo implicada en el abastecimiento de los partes meteorológicos para Prince William Sound, y permitió que el equipo de limpieza adaptase sus métodos a las condiciones atmosféricas.

Los especialistas del Instituto de Marina de Hubbs en San Diego y el Centro Internacional de Investigaciones sobre Aves de Berkeley (California), establecieron un centro para limpiar y rehabilitar aves acuáticas.

Fue lamentable este desastre ya que tuvo un gran impacto contra el medio ambiente y aun hoy las costas de Alaska siguen padeciendo de aquel accidente.

El Exxon Valdez, a la izquierda, ya varado y dañado, traspasa el crudo de sus tanques a otro buque, para evitar un mayor derrame en el mar.

Murió el capitán del Exxon Valdez, el buque que en 1989 produjo un masivo derrame de crudo, 14 septiembre 2022

Joseph Hazelwood, el capitán del petrolero Exxon Valdez, que encalló hace más de tres décadas en Alaska, causando uno de los peores derrames de petróleo en la historia de los Estados Unidos y del mundo, murió a los 75 años de edad.

En tal sentido, la familia de Hazelwood informó a The Washington Post y The New York Times que el excapitán falleció en julio de 2022 luego de su lucha contra el COVID-19 y el cáncer.

Afectó aproximadamente 1500 millas de la costa del golfo de Alaska y mató a casi 250 000 aves marinas, 2800 nutrias marinas, 300 focas comunes, casi dos docenas de águilas calvas y muchas orcas.

Inicialmente, Hazelwood estaba bajo sospecha de estar intoxicado cuando ocurrió el derrame. Aún así, fue absuelto en un juicio que tuvo lugar en 1990 en el que testigos presenciales mencionaron que parecía estar sobrio cuando el barco encalló.

El derrame del Exxon Valdez fue el peor en la historia de EE. UU. durante más de 20 años hasta que fue superado por el desastre de Deepwater Horizon que tuvo lugar en 2010, que nuevamente derramó casi 170 millones de galones de petróleo crudo en las aguas del Golfo de México, más de 15 veces la cantidad que el Valdez derramó hace 21 años frente a Alaska.

 Referencias: LA Times, UPI, New York Post.

Exxon Valdez 25 años después

Antonio Figueras (12 diciembre 2013)

Al Exxon Valdez  le cambiaron siete veces de nombre. El último fue Oriental Nicety. En 2012 fue desguazado en la India. Hace veinticinco años 23 años atrás, encalló en el arrecife de Bligh, en la bahía Prince William y derramó más de 41 millones de litros de petróleo, contaminando unos 3.000 kilómetros de costas y matando a miles de animales de diversas especies. El derrame también afectó a la economía de la región.

Veinticinco años después el plan a largo plazo para la rehabilitación de los recursos dañados por el vertido no se ha puesto en marcha.

De acuerdo con documentos publicados recientemente por Public Employees for Environmental Responsibility, el departamento de Justicia de los Estados Unidos y el estado de Alaska siguen esperando los resultados de científicos para conseguir los 92 millones de dólares que permitan poner en marcha este plan.

La limpieza del vertido del Exxon Valdez se desarrolló durante cuatro veranos y tuvo un coste de dos billones de USD, según el Exxon ValdezOil Spill Trustee Council. En 1991, Exxon alcanzó un acuerdo civil con el gobierno americano y el estado de Alaska que consistía en pagos de $900, una multa de $25 millones y$100 millones en costes de restitución.

En 1996, se llegó a un acuerdo en el que se contemplaba la necesidad de tratar los daños a largo plazo y de limpieza de restos de petróleo con un coste estimado de 92 millones de dólares.

Han pasado siete años y  Exxon Mobil, la compañia más rentable en bolsa del mundo no solo no pagó sino que sigue pleiteando.

De hecho se desconoce el impacto a largo plazo de grandes vertidos de petróleo. Por ejemplo en el caso del  Exxon Valdez la pesquería de arenques se colapsó repentinamente y todavía no se ha recuperado.

Además el petróleo ha permanecido en el ecosistema más tiempo del previsto. En un estudio de la NOAA realizado en 2001 se muestrearon 96 lugares y se encontró que el 58% estaba contaminado.

En 2010, un trabajo publicado en Nature explicaba que algunos investigadores calcularon inicialmente que el vertido del Exxon Valdez‘s desaparecería en pocos años, meses o incluso que las operaciones de limpieza con agua a presión lo eliminaría. Sin embargo debido a la geología y estructura del ecosistema siguen existiendo bolsas de petróleo enterradas medio metro por debajo de la superficie de algunas playas.

Muchos se preguntan si no se deberían utilizar estas lecciones en  el proceso en marcha para determinar la responsabilidad a largo plazo de BP’s en la catástrofe de la Deepwater Horizon, un vertido  20 veces mayor que el del  Exxon Valdez.

Vertido de petróleo en el Golfo de México

Vertido de petróleo en el Golfo de México

Deepwater Horizon

Deepwater Horizon tras la explosión

Historial

Astillero: Hyundai Heavy Industries

Clase: American Bureau of Shipping

Tipo: A1 DPS-3 Column Stabilized MODU

Operador: Transocean

Puerto de registro: Majuro

Autorizado: diciembre de 1998

Botado: 21 de marzo de 2000

Asignado: 2001

Viaje inaugural: Ulsan (Corea)Freeport (Texas)

Baja: 20 de abril de 20101

Destino: Hundida a 1500 m en el golfo de México, el 22 de abril de 2010

Características generales

Desplazamiento: 52,587 t

Eslora: 112 m

Manga: 78 m

Puntal: 97,4 m

Calado: 23 m

Propulsión

Diésel-eléctrica
• 6 motores diésel Wartsila 18V32
• 6 generadores ABB AMG 0900xU10 AC
• 8 pod azimutales Kamewa, 360°

Potencia: 42 MW

Velocidad: 4 nudos

Profundidad: 41,5 m

Tripulación: 146

Capacidad: Lodo bentonítico: 705 m³
Agua de drenaje: 2078 m³
Agua potable: 1185 m³
Fueloil: 4426 m³
Bentonita 386 m³
Cemento: 231 m³

Equipamiento aeronaves

Plataforma para apontaje de helicópteros

Número OMI: 8764597

MMSI: 538002213

Indicativo de llamada: V7HC9

Deepwater Horizon fue una plataforma petrolífera semisumergible de posicionamiento rápido de aguas ultra-profundas2construida en 2001 y situada en el golfo de México, compartido por Estados Unidos, Cuba y México. Se hundió el 22 de abril de 2010 como resultado de una explosión que había tenido lugar dos días antes, provocando el vertido de petróleo más importante de la historia,3​ estimado en 779 000 toneladas de petróleo crudo.

Los segundos daños afectaron a las marismas de la desembocadura y el delta del Misisipi, extendiéndose al área de Luisiana y otros sectores de Florida y Cuba.

El propósito de la torre Deepwater Horizon era perforar pozos petrolíferos en el subsuelo marino, trasladándose de un lugar a otro conforme se requiriera. Una vez que se terminaba de perforar, la extracción era realizada por otro equipo. Deepwater Horizon era propiedad de Transocean y había sido arrendada a BP hasta septiembre de 2013. En septiembre de 2009 perforó el pozo petrolero más profundo de la historia.

Como resultado del accidente, once miembros del personal perdieron la vida.

Junto con el hundimiento de la plataforma Petrobras 36 en 2001 con los mismos muertos, ha sido la peor tragedia en una plataforma petrolífera desde la explosión de la plataforma británica Piper Alpha en 1988, que provocó 167 muertos.4

Descripción

Una plataforma petrolífera de la clase RBS-8, similar a la accidentada.

Deepwater Horizon fue una torre petrolífera de diseño RBS-8D de quinta generación, semisumergible, de posicionamiento dinámico y de aguas ultraprofundas,5​ cuyos taladros perforaban el lecho marino mientras que otro tipo de torres y plataformas son utilizadas para extraer petróleo de pozos ya taladrados.6​ La torre tenía 121 m de largo por 78 m de ancho y, de acuerdo a las declaraciones de Billy Nungesser, presidente de la parroquia de Plaquemines, Luisiana, era una de las torres de perforación más grandes de aguas profundas.7​ Podía operar en aguas de hasta 2400 m de profundidad.7​, y tenía una profundidad máxima de perforación de 9100 m8​ La torre podía alojar una tripulación de hasta 130 miembros.8

La plataforma podía ser remolcada hasta la posición de perforación, donde tanques en sus pontones y columnas eran lastrados.9

Historia

Diseñada originalmente para R&B Falcon, Deepwater Horizon fue construida por Hyundai Heavy Industries en Ulsan, Corea del Sur.5​ Su construcción comenzó en diciembre de 1998 y fue entregada en febrero de 2001,10​ después de la compra de R&B Falcon por Transocean.11​ Fue la segunda torre petrolífera construida de una clase de dos, aunque la Deepwater Nautilus, su predecesora, no tenía posicionamiento dinámico. Después de arribar al golfo de México, Deepwater Horizon fue utilizada bajo contrato por BP Exploration. Su trabajo incluía la perforación de pozos petrolíferos en los yacimientos Atlantis y Thunder Horse, un descubrimiento del año 2006 en el yacimiento Kaskida,12​ y en el yacimiento Tíber en el 2009.13​ El 2 de septiembre de 2009, Deepwater Horizon perforó en el yacimiento Tíber, el depósito de petróleo y gas más profundo hasta el momento, con una profundidad vertical de 10,685 m y una profundidad medida de 10,685 m, de los cuales 1,259 m eran agua.131415

En 2002, la plataforma fue actualizada con “e-drill”, un sistema de monitoreo de perforación con el que, técnicos en Houston, Texas, recibían información en tiempo real del proceso de perforación de la torre, así como información sobre mantenimiento e informes de errores.16

Antes del accidente, Deepwater Horizon trabajaba en el cañón Misisipi, en el bloque 252 de BP, conocido con el nombre de prospecto Macondo.17​ La torre se encontraba a 80 kilómetros de la costa sureste de Luisiana.6

En octubre de 2009, BP extendió el contrato por tres años más, los cuales se contarían a partir de septiembre de 2010.18​ Se estima que el contrato de arrendamiento representaba la cantidad de US$544 millones, $496,800 dólares al día.19

Explosión y hundimiento de la Deepwater Horizon

El 20 de abril de 2010, la plataforma que perforaba el pozo de petróleo “Macondo”, otorgado a BP y cuya prospección subcontrató a la firma Deepwater Horizon, explotó, muriendo once personas y, posteriormente, se hundió, derramando unos 4,9 millones de barriles de petróleo (210 millones de galones estadounidenses; 780 millones de litros)20​ en las aguas del golfo de México.

El vertido de crudo en el golfo de México ha sido, hasta la fecha, el mayor de la historia de entre los acaecidos accidentalmente, ya que sus cifras solo se ven superadas por el masivo vertido voluntario perpetrado por el régimen de Saddam Hussein durante la guerra del Golfo.[cita requerida]

Explosión

El fuego al interior de la Deepwater Horizon comenzó a las 9:56 p. m. CST, del 20 de abril.21​ Al momento, se encontraban a bordo 126 tripulantes: 7 empleados de BP, 79 de Transocean, y empleados de otras compañías; entre ellas Anadarko, Halliburton, y M-I Swaco.22

Los empleados de Transocean reportaron que la iluminación eléctrica parpadeó, seguida de dos fuertes vibraciones. El radio operador Jim Ingram declaró “en la segunda patada, sabíamos que algo estaba mal”.23​ Después de la explosión, el sobreviviente Adam Rose mencionó que se había acumulado una presión anormal dentro del elevador marino, y a medida que subía “se expandió rápidamente e hizo ignición”. De acuerdo a una investigación interna de BP, una burbuja de gas metano escapó del pozo y se disparó hacia la columna de perforación, expandiéndose rápidamente a medida que reventaba varios sellos y barreras antes de explotar. Rose mencionó que el evento fue básicamente una explosión incontrolada de petróleo crudo. Los sobrevivientes describieron el incidente como una explosión repentina que les dio menos de cinco minutos para escapar cuando se disparó la alarma.24

La explosión fue seguida por un incendio que envolvió la plataforma. Después de quemarse por más de un día, la Deepwater Horizon se hundió el 22 de abril. La Guardia Costera declaró el 22 de abril que recibieron informes del hundimiento a aproximadamente las 10:21 a. m.25

El 8 de septiembre, BP publicó un informe donde sugerían que el origen de la ignición fue por gas liberado que entraba en las tomas de aire de los generadores diésel, y envolvía el área de la cubierta donde las salidas de escape de los generadores principales emitían gases calientes.26

Derrame de petróleo desde el fondo marino

El incontrolado derrame de petróleo —mezclado con una pequeña parte de metano—, provocado por la dificultad de sellar varias fugas en las tuberías del fondo marino,272829​ amenazó el hábitat de cientos de especies marinas y de aves.30

Las cifras del derrame son dispares, dependiendo de las fuentes estarían entre 680 y 11 600 toneladas diarias (1 barril de crudo estadounidense tiene 158,987 litros y su peso está entre los 119 y 151 kg). Desde el inicio del derrame hasta el 15 de junio de 2010 (55 días), las cifras del derrame acumuladas alcanzarían los 228 000 toneladas. Si la fuga continúa con cifras tan negativas -alrededor de 60.000 barriles diarios (más de 9,5 millones de litros diarios)-, 3132​ podría convertirse en uno de los mayores derrames de petróleo siendo al menos seis veces mayor al del Exxon Valdez.333234353637

Varios intentos de sellar el escape del pozo que producía el derrame fracasaron -campana de hierro e inyección de lodo pesado y cemento-, el último, mediante inyección de lodo y cemento o top kill, el 27 de mayo de 2010.383940​ El 13 de julio de 2010, British Petroleum colocó una nueva campana con la pretensión de acabar con la fuga incontrolada, cerrando las válvulas progresivamente, para detener el escape, pero se necesitaba canalizar el petróleo a barcos en la superficie.41

Vertido de petróleo en el golfo de México.

Para el 15 de julio de 2010 las estimaciones de cifras del derrame podrían alcanzar desde un mínimo de 298,000 toneladas hasta las máximas, de unas 594,000 tonelas (de 3,300,000 a 5,200,000 barriles).42​ El 15 de julio de 2010, British Petroleum asegura que aunque la nueva campana tuvo éxito, eso no significa que la fuga se vaya a detener de manera definitiva.43

Según datos de los Estados Unidos, el pozo de BP vertió 780 millones de litros. Según la investigación de la revista Science, el volumen final de crudo vertido al golfo asciende a unos 700 millones de litros, con un margen de error del 20 %, es decir, unos 8,9 millones de litros al día.44

Daños ambientales

Debido a la posición de la plataforma en el golfo de México, territorio compartido por Estados Unidos, Cuba y México, se especuló que el daño podía extenderse por una zona extremadamente amplia. Los primeros impactos del derrame se localizaron en las marismas de la desembocadura y el delta del Misisipi, con la aparición de tortugas, delfines y varias especies de aves marinas muertas o atontadas.45​ Los perjuicios al negocio de la pesca y el camarón en el área de Luisiana se estimaron en cifras millonarias.46​ Los frágiles ecosistemas de pantanos, con una variada población animal y vegetal, se vieron perjudicados; especies como el manatí, fueron las más afectadas.

Los daños previstos al sector turístico de playas de Florida y Cuba fueron también considerables.47​ El presidente estadounidense Barack Obama en 2010 comparó el incidente a los atentados del 11 de septiembre de 2001.48Unos años después, cualquier impacto al turismo era imperceptible.49

La Agencia de Protección Ambiental de los Estados Unidos (EPA) determinó que los productos químicos dispersantes usados por British Petroleum (2,5 millones de litros del dispersante Corexit fueron vertidos durante el primer mes) no eran seguros para la fauna marina,50​ ya que pueden bioacumularse en los tejidos de los organismos. El vertido del golfo de México afectó a más de 944 kilómetros de litoral. Los estados más afectados fueron Luisiana (540 km de litoral), Misisipi (180 km), Florida (114 km.) y Alabama (110 km).51

Un estudio publicado en Science concluye que la desaparición de la marea negra es más lenta de lo esperado, encontrándose bajo la superficie, lo que podría suponer un grave riesgo para la fauna marina.525354

Estudios de los efectos en los marineros y trabajadores que participaron en la limpieza

En 2011, se inician estudios sobre los efectos en quienes limpiaron los restos de la fuga en el golfo de México. El gobierno de Estados Unidos, presidido en ese entonces por Barack Obama, utiliza como referente el trabajo científico hecho en España, en 2003, con los marineros que recogieron el chapapote provocado por el desastre del Prestige en las costas españolas para realizar un gran estudio sobre los efectos del crudo en la salud de marineros y otros trabajadores que participaron en las tareas de recogida y limpieza.55

https://www.oceanfutures.org/news/blog/Derrame-de-petroleo-del-Deepwater-Horizon-5-anos-de-secuelas

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

El vertido de petróleo del Golfo de México fue más grave de lo que admitió EEUU

Para medir la cantidad de crudo usaron vídeos de alta definición. | Science

  • La revista ‘Science’ publica la primera estimación independiente revisada
  • El estudio ha sido realizado por científicos de la Universidad de Columbia
  • En total se han vertido más de 4.400.000 barriles de petróleo
  • La última cifra ofrecida por el Gobierno de EEUU era de 4.100.000 barriles

Teresa Guerrero | Madrid

Actualizado jueves 23/09/2010 20:01 horas

Durante los 87 días en los que el petróleo estuvo brotando del pozo de BP en el Golfo de México, uno de los aspectos más criticados a la compañía petrolera fue la falta de información y las falsas estimaciones sobre la cantidad de crudo que se estaba vertiendo. De los 1.000 barriles diarios admitidos al inicio, a 5.000, 12.000, 19.000…(cada barril contiene 159 litros). Como sospechaba la comunidad científica y acaba de ser confirmado, la cifra real fue muy superior: de 56.000 a 68.000 barriles de crudo ensuciaban a diario el océano hasta que a mediados de julio la instalación de una campana logró frenar parcialmente la salida de crudo.

Según el último cálculo realizado por el Gobierno de EEUU, el pozo de BP vertió 4.100.000 barriles

La primera estimación independiente revisada por otros investigadores y publicada en un ‘paper’ científico sobre el verdadero alcance del accidente llega apenas una semana después de que el Gobierno de EEUU declarara cerrado definitivamente el pozo.

En total, los científicos del Instituto de la Tierra de la Universidad de Columbia calculan que se vertieron unos 4.400.000 barriles de crudo. Esta cifra se aproxima más al último cálculo facilitado por el Gobierno estadounidense (4.100.000 barriles) aunque los métodos que utilizaron para realizar su estimación no han sido hecho públicos. El nuevo estudio, publicado esta semana en la revista ‘Science’, confirma que se trata del peor vertido accidental de la historia.

Un dato imprescindible

A pesar de que tanto la compañía BP como el Gobierno de EEUU habían subestimado la importancia de conocer cuántos litros de petróleo se habían vertido, la comunidad científica, las organizaciones ecologistas y expertos legales coinciden en subrayar que esta información es imprescindible para determinar las respuestas a corto y largo plazo así como la responsabilidad económica de la compañía por el desastre. Y es que, aunque el petróleo ha dejado de brotar del pozo Macondo, los daños ocasionados en el Golfo de México permanecerán durante décadas.

El investigador Timothy Crone preparando la cámara. | Carlos Sánchez.

Para calcular la magnitud de la catástrofe, los científicos de la Universidad de Columbia utilizaron una nueva técnica desarrollada en 2006 para estudiar corrientes hidrotermales naturales. Se trata de un sistema óptico que calcula el volumen del flujo del crudo basándose en las imágenes captadas en vídeos de alta resolución de la columna de petróleo.

La explosión de la plataforma ‘Deepwater Horizon’ se produjo el pasado 20 de abril. El estudio establece dos periodos distintos: del 22 de abril al 3 de junio (56.000 barriles vertidos a diario), y a partir del 4 de junio, cuando la cifra aumentó a 68.000 barriles.

4.400.000 barriles en el océano

Para hacer su estimación, restaron los 804.877 barriles que BP asegura haber recogido, obteniendo un total de 4.400.000 barriles vertidos. Teniendo en cuenta un margen de error de un 20%, la cifra se aproxima bastante a la última estimación del Gobierno de EEUU: 4.100.000 barriles.

“Quisimos hacer una medición independiente porque la sociedad tenía la impresión de que las cifras ofrecidas no eran correctas“, explica Timothy Crone, geofísico marino de la Universidad Columbia y principal autor del estudio.

Para llevarlo a cabo utilizaron un sistema diseñado para otro fin: “Es un buen ejemplo de cómo una investigación que en principio parece no tener una utilidad inmediata, se convierte de repente en un sistema valioso para la sociedad”, añade Crone.

Asimismo, los científicos de este estudio aseguran que tanto ellos como otros colegas creen que podrían ofrecer una estimación más precisa de los litros vertidos si el Gobierno y BP les ofreciesen más información y tuvieran acceso a otros vídeos.

El 50% del crudo vertido por BP sigue en el Golfo de México, según estudio científico

De los 4,9 millones de barriles que vertió el pozo al océano durante los tres meses que BP tardó en taponarlo, 2,5 millones aún flotan en pequeñas partículas o integrados al ecosistema

Lunes 27 de septiembre de 2010 – 09:37 pm

(AP)

Washington (EFE). La comisión presidencial que evalúa la respuesta al vertido de BP en el Golfo de México escuchó hoy nuevos cálculos científicos poco esperanzadores, que afirman que la mitad del crudo derramado en el desastre permanece aún en el océano.

El científico de la Universidad de Florida Ian MacDonald disputó las cifras oficiales sobre el petróleo que flota en el Golfo ante un panel compuesto, entre otros, por el secretario de Interior de EE.UU., Ken Salazar, y el encargado de la respuesta federal al vertido, Thad Allen.

De los 4,9 millones de barriles que se estima que vertió el pozo al océano durante los tres meses que BP tardó en taponarlo, 2,5 millones aún siguen flotando en pequeñas partículas o integrados en el ecosistema, aseguró MacDonald.

“Gran parte está enterrada en los sedimentos marinos y costeros”, advirtió el científico, que añadió que las evidencias de que ese material se haya degradado por acción bacteriana antes de enterrarse son “escasas”.

MacDonald criticó el hecho de que el Gobierno estadounidense empleara “ocho intentos” hasta llegar a una estimación correcta del crudo liberado al mar, y que el cálculo aportado por BP, que hablaba de 5.000 barriles de crudo al día, era “unas 100 veces menor de lo que debería haber sido” según el color y la espesura del petróleo.

CONTRASTE DE CIFRAS

Las cifras de MacDonald contrastan con las aportadas en agosto por el equipo científico gubernamental, que aseguró que un 75% del petróleo vertido en la catástrofe se ha quemado, evaporado o descompuesto por procesos naturales.

Por su parte, el secretario del Interior pidió paciencia a quienes solicitan que se levante la moratoria a las perforaciones en alta mar, que expira el próximo 30 de noviembre. “Vamos a aplicar en un nuevo marco regulador las lecciones que hemos aprendido en los últimos seis meses”, aseguró Salazar.

La Oficina de Administración de la Energía Marina entregará en el próximo mes a Salazar un informe que valorará si debe levantarse o no la moratoria, según aseguró el director de esa agencia, Michael Bromwich.

Por su parte, Lisa Jackson, de la Agencia de Protección Medioambiental (EPA, en inglés), aseguró que los 1,8 millones de dispersantes usados para neutralizar el crudo “son menos tóxicos que el propio petróleo y se degradan más rápidamente”, aunque admitió que sus efectos son a largo plazo y merecen “precaución”.

Terremoto de San Francisco

Terremoto de San Francisco de 1906

Terremoto de San Francisco de 1906

Coordenadas: 37°45′N 122°33′O

7,9 en potencia de Magnitud de Momento (MW)

Parámetros

Fecha y hora: 18 de abril de 1906

Profundidad: 5km (3 mi)

Duración: 4 minutos

Consecuencias

Mercalli: XI (Extremo)

Shindo: AMJ 7

Víctimas: 10 000 muertos

El gran terremoto e incendio de San Francisco de 1906 fue un poderoso sismo que sacudió principalmente a la ciudad de San Francisco (Estados Unidos) la mañana del 18 de abril de 1906. El terremoto fue de una magnitud de 7,9 grados1​ y su epicentro estuvo según los expertos del Servicio Geológico de los Estados Unidos, sobre la costa de Daly City y al suroeste de San Francisco.

Los temblores principales empezaron a las 05:12 de la mañana a lo largo de la falla de San Andrés. Se dejó sentir sobre la costa del Pacífico desde Oregón hasta Los Ángeles y hacia el interior se sintió hasta Nevada. Después de eso se produjo un incendio que junto al sismo se considera la catástrofe más importante de los Estados Unidos.

En un principio se dio la cifra de 478 fallecidos, pero en la actualidad se sabe que el desastre fue más catastrófico, y que las autoridades de la época lo subestimaron, sobre todo en las zonas de habitantes chinos. Las cifras aproximadas arrojan al menos 10 000 muertos, la mayor parte de los cuales fueron dentro de la ciudad de San Francisco, pero hubo 189 fallecidos en otras zonas de la Bahía de San Francisco. Algunos de los principales lugares que también estuvieron muy afectados por el sismo fueron Santa Rosa, San José y en el área de Redwood City y Universidad de Stanford.

Se calcula que entre 225 000 y 300 000 personas perdieron sus casas de un total de 400 000 habitantes. La mitad se refugió al otro lado de la Bahía de Oakland. Los periódicos de la época informaron de cómo el Parque de Golden Gate, el barrio de Panhandle y las playas de entre Ingleside y North Beach estuvieron recubiertas por tiendas improvisadas. Hubo más muertos y daños por el gran incendio que se desató después, que por el sismo en sí, muy similar al gran terremoto de Kanto que destruyó Tokio y Yokohama, Japón el 1 de septiembre de 1923.

Después del terremoto, un ingeniero llamado Hermann Schussler exploró la falla de San Andrés, que corta a través de la montaña de la cordillera de la costa. En 1908, testificó ante una corte de Distrito Norteamericana de San Francisco acerca de lo que vio.

«La característica más notable fue que las montañas del este se acercaron cuatro pies y medio a las montañas del oeste», explicó Schussler ante la corte. «Si San Francisco hubiera estado en o cerca de la falla no habría quedado nada de ella» concluyó.

Después del terremoto y de los fuegos, más de quinientas manzanas de la ciudad de San Francisco estaban en ruinas. Más de la mitad de la población de la ciudad quedó sin hogar. La gente vivía en tiendas de campaña y otros albergues, y cocinaban al aire libre. Con todo, a pesar de la devastación, no llevó mucho tiempo que la gente comenzara a recoger los escombros.

«San Francisco está comenzando a levantarse de sus cenizas nuevamente», escribió Samuel Fortier, profesor de UC Berkeley, una semana después del terremoto y de los fuegos. «No hay falta de confianza», añadió. «El valor de la gente es simplemente notable. Los miles de personas que han perdido casi todo lo que poseían están maravillosamente alegres, y raramente se oyen lamentos».

Fotografía aérea de San Francisco devastada, tomada el 28 de mayo de 1906, tras el terremoto por George R. Lawrence

Intensidad

Intensidades: MMI

Lugares

San Francisco Santa Rosa: XI (Extremo)

 Sebastopol, San Bruno: X (Extremo)

San José, Point Arena:  IX (Violento)

Eureka, Salinas: VIII (Severo)

Truckee, Parkfield: VII (Muy fuerte)

Willows, Fresno: VI (Fuerte)

Chico, Paso Robles: V (Moderado)

Dunsmuir, Bakersfield: IV (Ligero)

Santa Mónica, Indio: III (Débil)

U.S. Earthquake Intensity Database, NGDC

En la cultura popular

Incendio de la ciudad

  • En la película de 1936 titulada San Francisco, dirigida por W.S. Van Dyke e interpretado por Clark Gable y Jeanette MacDonald, se relata este terremoto.
  • En la película de 1938 titulada The Sisters (Las Hermanas), Louise, el personaje de Bette Davis, vive el terremoto en su casa mientras espera a su esposo Frank (personificado por Errol Flynn).
  • En la serie de televisión Charmed (Embrujadas), la mansión Halliwell fue destruida en 1906 por este terremoto y luego reconstruida por los bisabuelos de las tres hermanas Halliwell.
  • También en la serie Charmed (Embrujadas), se sitúa a la mansión Halliwell en la calle Prescott en el número 1329 de San Francisco, pero la casa original, se encuentra en Los Ángeles, en concreto en Carroll Avenue en el número 1329.
  • En la serie de televisión Witches of East End, una vida pasada de Freya murió en este terremoto.
  • En la película Winchester se muestra una escena de cómo se destruye la Mansión Winchester por este terremoto.
  • En la serie de TV Un paso al más allá (1963), en el capítulo «Terremoto» («Earthquake»), se muestra los estragos del sismo que destruyó la ciudad de San Francisco y que, según la historia, fue vivida un día antes por un simple botones de hotel.

El terremoto de San Francisco, 1906

En la mañana del 18 de abril de 1906, un terremoto masivo sacudió a San Francisco, California. Aunque el terremoto duró menos de un minuto, su impacto inmediato fue desastroso. El sismo también causó varios incendios a través de la ciudad que permanecieron fuera de control por tres días y destruyeron cerca de 500 cuadras de la ciudad.

Aun con el apoyo inmediato de la grande población militar de San Francisco, la ciudad estaba devastada. Se estima que el terremoto y los incendios mataron alrededor de 3,000 personas y dejó sin hogar al menos 400,000 residentes. Aunque recibían ayuda del país y del mundo, los sobrevivientes enfrentaron semanas llenas de dificultades y penurias.

El Congreso respondió al desastre de varias maneras. La Cámara y los Comités de Apropiaciones del Senado promulgaron varias asignaciones de emergencia para que la ciudad pudiera pagar por los alimentos, agua, tiendas de campaña, mantas y equipos médicos en las semanas siguientes del terremoto y los incendios. También apropiaron fondos para reconstruir mucho de los edificios públicos que fueron dañados o destruidos.

Otras respuestas del Congreso incluyeron el Comité de Reclamaciones (House Claims Committe) quienes fueron responsables de manejar los reclamos de propietarios que buscaban ser reembolsados por sus propiedades destruidas. Por ejemplo, el comité recibió varias reclamaciones de propietarios de salones y licorerías, quienes suministros de alcholes fueron destruidos por oficiales quienes querían minimizar la propagación de incendios y el riesgo de violencia de la muchedumbre. En los días siguiendo el terremoto, oficiales destruyeron un estimado de $30,000 en licores.

El Comité de los Edificios Públicos y Terrenos (Public Buildings and Ground) reportaron los daños a los edificios en San Francisco, Oakland, y San José, y estimaron los costos de reparación. El Senado también aprobó una resolución pidiendo al Secretario de Guerra que le dieran una copia del informe sobre el terremoto y los incendios. El informe sobre los esfuerzos y las fotografías, preparadas por el ejército de los Estados Unidos, ahora se encuentran en los registros del Comité del Senado e Impresión (Senate Committee on Printing).

Cazadores de recuerdos. Estos en las etapas tempranas causaron considerables problemas para autoridades militares. RG 46, Registros del Senado de los Estados Unidos, Archivos Nacionales.

 

 

 

Fuego parcialmente bajo control – tercer día. RG 46, Registro del Senado de los Estados Unidos, Archivos Nacionales.

 

 

 

 

 

 

 

Efecto del terremoto en casas construidas en suelo flojo o hecho.”

 

 

 

 

 

 

 

 

 

 

“Vista de la torre arruinada del municipio. Daño causado solo por el terremoto.”

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vía férrea – enseñando el desplazamiento de suelo hecho.” RG. 46, Registro del Senado de los Estados Unidos, Archivos Nacionales.

 

 

 

 

 

 

 

 

“Más ayuda militar – cuarto día.” RG 46, Registro del Senado de los Estados Unidos, Archivos Nacionales.

 

 

 

 

 

 

 

 

 

“Una fila típica para el pan en las etapas tempranas de distribución de ayuda.”

 

 

 

 

 

 

 

Edificios destruidos y fuegos a lo largo de la calle California en San Francisco, después del terremoto de 1906.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Qué es la temida falla de San Andrés (y por qué preocupa tanto)

La de San Andrés es una de las fallas más estudiadas del planeta ya que en su práctica totalidad se encuentra sobre la superficie terrestre.

Fue la causante del terremoto de magnitud de 7,8 que destruyó gran parte de San Francisco en 1906, provocando la muerte de más de 3.000 personas.

La falla de San Andrés atraviesa California y se extiende a lo largo de 1.300 kilómetros.

A los científicos les preocupa específicamente la sección sur de la falla pues, según estimaciones, lleva demasiado tiempo sin descargar cantidades grandes de energía.

Estudios geológicos muestran que en los últimos 1.500 a 1.400 años, terremotos grandes han ocurrido con una periodicidad de unos 150 años en la sección sur de la falla.

Falla de San Andrés. Fotografía tomada de la web buscada con Google

El terremoto de San Francisco de 1906

Todos los años, el Departamento de Bomberos de San Francisco celebra una ceremonia que tiene lugar a las 5:12 de la mañana. El motivo es recordar el terremoto y posterior incendio que asolaron la ciudad el 18 de abril de 1906. Los expertos creen que el seísmo alcanzó una magnitud de 8,2 en la escala de Richter, escala que alcanza hasta el 9 pero no está cerrada. El epicentro tuvo lugar en Daly City, a 5,31 kilómetros al sur de San Francisco, y se sintió a más de 500 kilómetros.

En 1906, San Francisco es la novena ciudad en importancia de los Estados Unidos y tiene 400.000 habitantes, de los cuales sólo la mitad eran nativos. Una parte se halla sobre colinas que alcanzan unos 285 metros de altitud. La ciudad se encuentra en el estado de California, que dispone de grandes recursos naturales: oro, sal, hierro, plata… San Francisco tenía muchos teatros y su Ópera recibía a los artistas más célebres.

Pero no todo era perfecto… En California está situada la falla de San Andrés, de 970 kilómetros, más o menos. Va desde Oregón, al norte, hasta el desierto de Mojave, al sureste de California. Se encuentra entre la placa de Norteamérica y la del Pacífico: ahí las dos placas tratan de deslizarse una encima de la otra; cuanto más tiempo se obstruyan entre sí, más fuerte será el terremoto que tenga lugar.

Y llegó el fatídico día. Para relatar los primeros momentos, queremos incluir un fragmento del testimonio del gran tenor italiano Enrico Caruso, que se encontraba en la ciudad para representar el papel de Don José en la ópera Carmen de Bizet: «me encontraba en el Hotel Palace, donde tenía una habitación en el quinto piso. […] Me desperté alrededor de las 5, sentía que mi cama se balanceaba. Me levanté, fui a la ventana y miré fuera. Vi los edificios derribándose, y oía los gritos de hombres, mujeres y niños. Permanecí sin moverme unos cuarenta segundos. […] El yeso del techo cayó como una gran ducha, cubriendo todo el mobiliario…» Dicen que Caruso no volvió a San Francisco en su vida.

San Francisco asolada por el terremoto de 1906. Fotografía tomada de la web buscada con Google

En realidad no fue un solo terremoto, nunca es uno solo, sino que empieza uno y luego viene una réplica, o las que sean, que son las que rematan la faena. Pero peor que el terremoto, fue el incendio que vino después: hay muchas teorías sobre esto, pero lo más probable es que, al romperse los edificios, se rompieron también los conductos de gas lo que originó un incendio que tardó tres días en extinguirse por completo, pues también se rompieron los conductos del agua. La mayor parte de los edificios eran de madera. También se perdió la comunicación telefónica. Los almacenes de la bahía, el barrio chino y la zona de negocios quedaron destrozados, al igual que su Ayuntamiento, que hacía no mucho terminó de construirse. También se vieron afectadas otras ciudades de la bahía de San Francisco, como Santa Rosa y San José.

Como suele hacerse en Estados Unidos cuando se descontrola una situación de caos, el ejército tuvo que tomar cartas en el asunto. Se ordenó la ley marcial, disparándose a los saqueadores que quisieran aprovecharse. Para apagar el fuego, como no había agua, se dinamitaron algunos edificios para hacer de cortafuegos y, de esta manera, salvar el oeste de la ciudad. Algunos propietarios incendiaron su casa porque el seguro no les cubría sólo por el terremoto.

Nubarrones de humo provocado por el incendio posterior al seísmo. Fotografía tomada de la web buscada con Google

Se cree que hubo más 3000 víctimas mortales sólo en San Francisco, sin contar las del resto de la bahía, pero no se puede saber con exactitud porque las autoridades no pusieron mucho interés en contabilizar a la población de origen oriental. Y hubo más muertos por el fuego que por el terremoto. La mitad de la población se quedó sin casa, se perdieron unos 28000 edificios, el 80% de la ciudad. Esta gente se acopló en su mayoría como pudo en tiendas de campañas instaladas en el parque del Golden Gate.

La ciudad no tardó en reconstruirse, en el mismo sitio, encima de la falla de San Andrés. Para conjurar el peligro, se empleó un nuevo sistema en la construcción, a base de cemento y acero. Se desterraron los vehículos tirados por animales y se introdujeron el tranvía y el automóvil, desapareciendo las cuadras donde se almacenaba la paja que servía de alimento a las caballerías.

La Exposición Universal de San Francisco de 1915 mostró al mundo una ciudad que resurgió de sus cenizas, pero que continúa conviviendo con el peligro.

Tsunami de bahía Lituya

Tsunami de bahía Lituya

Bahía de Lituya

8,3 en escala de Richter (ML)

Parámetros

Fecha: 9 de julio de 1958

Profundidad: 35 km

Coordenadas del epicentro: 58°20′N 136°31′O

Consecuencias

Zonas afectadas: Sureste de Alaska

Víctimas: 39 muertos

El tsunami de Bahía Lituya fue un desastre natural ocurrido el 9 de julio de 1958 en la bahía Lituya, al noreste del golfo de Alaska. Un fuerte sismo de magnitud 8,3 hizo que se generara una ola de 524 metros, convirtiéndose en la ola gigante más grande de la que se tenga registro en el mundo, llegando a calificarse el suceso de megatsunami más grande de la historia.

Acontecimientos

Los daños causados por el megatsunami de la bahía de Lituya de 1958 se pueden ver en esta fotografía aérea oblicua de la bahía, notándose en las áreas más claras en la orilla donde los árboles han sido arrancados de raíz. La flecha roja muestra la ubicación del deslizamiento de tierra, y la flecha amarilla muestra la ubicación del punto más alto de la ola que se extiende sobre el promontorio.

El 9 de julio de 1958, a las 22:15 (hora local), un gran terremoto de magnitud de momento de 7.8 y una intensidad máxima percibida de XI (Extremo) en la escala de Mercalli tuvo su epicentro en la latitud 58.37° N, longitud 136.67° O, cerca de la cordillera Fairweather, a 21 km al sureste de la bahía Lituya.1​ El sismo se sintió en ciudades alrededor del sudeste de Alaska, en un área de 1 millón de km cuadrados, entre Seattle por el sur, Whitehorse por el este de Alaska.2

Menos de dos minutos después, se desprendieron más de 30 millones de metros cúbicos de tierra y rocas del glaciar Lituya, al fondo de la bahía. El impacto hizo que se levantara una columna de agua de 520 metros de altura, que avanzó a la entrada de la bahía con una velocidad cercana a los 200 km por hora.3

La zona es parte del Parque y Reserva Nacional Glacier Bay, por lo que los alrededores estaban deshabitados, pero a la hora del sismo, tres barcos de pescadores se encontraban en la bahía. La embarcación de Vivian y Bill Swanson, el Badger, fue llevada por la ola “deslizándose por el sur de Alaska” hasta la entrada de la bahía, donde finalmente se hundió.3​ Alcanzó a estar a más de 30 metros sobre el nivel de los árboles. Afortunadamente, el matrimonio fue rescatado por otro barco. Howard Uhlrich y su hijo de siete años lograron esquivar la ola con su embarcación Edrie, internándose hacia ella. Pero Orville Wagner y su esposa, a bordo del Sunmore, murieron aplastados por la pared de agua. En Yakutat, único asentamiento permanente cerca del epicentro en ese momento, la infraestructura, como puentes, muelles y oleoductos, sufrió daños. Una torre de agua se derrumbó y una cabaña sufrió daños irreparables. Se produjeron ebulliciones de arena y fisuras cerca de la costa sudeste, y se cortaron los cables submarinos que soportaban el Sistema de Comunicación de Alaska.1

La ola del tsunami causó daños a la vegetación en los promontorios alrededor del área donde ocurrió la caída de rocas, hasta una altura de 520 metros de altura, así como a lo largo de la costa de la bahía.3

Geología del sismo

Lo que ocurrió en Lituya cae en la característica especial de los denominados megatsunamis. Solo las olas de más de 100 metros entran en esa clasificación. La región de Alaska donde ocurrió el sismo se encuentra sobre una falla tectónica, cuyo movimiento causó el gran terremoto. La zona de la bahía de Lituya tiene una historia de eventos de megatsunami, pero el evento de 1958 fue el primero para el cual se registraron datos suficientes hasta ese momento.4

Diagrama del megatsunami de bahía Lituya de 1958 (en inglés)

Si bien hay aún discusiones acerca de qué combinación de factores produjo una ola de tal envergadura, sí está claro que fue el sismo lo que provocó el desprendimiento de 30 millones de metros cúbicos de material del glaciar. Además, la ensenada tiene una entrada muy pequeña, que deriva en que una considerable masa de agua esté prácticamente encerrada entre montañas. Un terreno con esas características posee una tendencia inherente a provocar olas gigantes, ya sea por corrimientos de tierra o por terremotos. Un estudio de 2010, concluyó que era más probable un evento de “doble deslizamiento”: la caída de rocas, que impacta muy cerca de la cabecera del glaciar Lituya, causó la ruptura de alrededor de 400 metros cúbicos de hielo del dedo del frente glaciar (como se muestra en fotografías de la época), y posiblemente inyectó una considerable cantidad de agua debajo del glaciar. El glaciar, aligerado, se levantó antes de estabilizarse en el agua, y una gran cantidad de relleno atrapado (sedimento subglacial y proglacial) que quedó atrapado debajo del glaciar y que ya se había soltado por el terremoto, se liberó como un segundo y mayor corrimiento, casi inmediatamente.5

Enlaces externos

La Bahía Lituya se sitúa en la costa del océano Pacífico de Alaska…

En color amarillo se muestran las áreas costeras dañadas tras el tsunami de Bahia Lituya, en Alaska…

Cuando la gigante montaña de agua comenzó a recorrer toda la extensión de la Bahía Lituya adquirió una altura máxima aproximada de 523 metros, cerca de la entrada de Gilbert, borrando del mapa varias líneas costeras.

Para situar en una inútil escala, en mar abierto la ola más grande documentada llegó a los 19 metros. Teahupoo, por ejemplo, puede llegar a más de 7 metros y la mítica Pipeline en Oahu, Hawaí, ha alcanzado o superado los 9 metros. Garrett McNamara bajó de una ola enorme que superaba los 20 metros en Nazaré, Portugal.

Pero estas increíbles medidas (y hazañas) poco tienen que ver con el peligro de los tsunamis, fenómenos naturales ocasionados por perturbaciones sísmicas y prácticamente imposibles de ser surfeados. Las olas ocasionadas por tsunamis pueden ser pequeñas, aunque más peligrosas incluso que muchos spots de surf enormes y emblemáticos…

Desde su descubrimiento, el lugar está marcado por la tragedia. Hay una isla en el centro de la bahía que se llama Cenotafio. El nombre se lo puso el expedicionario francés Jean-François de La Pérouse, quien perdió a 21 marinos en dos chalupas que perecieron contra las violentas corrientes en 1798.

El pedazo de tierra donde impactó la ola. La línea de corte llega hasta los 524 metros de altura (Don Miller/USGS)

Howard Ulrich se encontró cara a cara con una ola de por lo menos 30 metros e intentó levantar el ancla del Edrie, pero se dio cuenta de que estaba atascada. Acto seguido, le puso un chaleco salvavidas a su hijo y soltó el ancla. La ola avanzó de costa a costa, rompiendo por su lado derecho y más limpia en su lado izquierdo. Ulrich la encaró de frente y la nave se disparó hacia arriba, escalando hasta la cresta, mientras la cadena del ancla se hacía añicos y salía disparada dando trompos. El barco descendió por la cola de la ola y fue devuelto hacia el centro de la bahía por la marea que regresaba.

Howard Ulrich y su hijo de siete años sobrevivieron al evento (Port and Terminal)

Más cerca de la desembocadura, la pared de agua se llevó puesto al Badger y lo arrojó unos 25 metros por sobre las copas de los árboles del cordón de la bahía. La cresta de la ola terminó de romper y el barco aterrizó, tocando fondo cerca de la costa externa.

De alguna manera, tanto Bill y Vivian Swanson como Howard Ulrich y su hijo vivieron para contarlo. Pasada la medianoche, otra embarcación respondió a los pedidos de auxilio del Edrie y rescató a los Swanson, que habían abandonado su naufragio en un esquife de emergencia. En cambio, el Sunmore desapareció y los Wagner jamás fueron encontrados.

El día después

El geólogo Don Miller estaba en Bahía de los Glaciares, a solo 50 kilómetros de allí, y se inquietó al ver como las rocas caían de los acantilados cuando impactó el terremoto. A la mañana siguiente, se enteró de la catástrofe y voló en un hidroavión hasta Bahía Lituya.

El piloto no pudo visualizar un lugar para aterrizar entre los escombros y los troncos que flotaban sobre el agua, pero al sobrevolar la zona Miller observó una nueva línea de corte fresca y reluciente sobre el terreno. Más tarde volvería para documentar el desastre y medir el corte con precisión: 524 metros de altura en su punto más alto, en donde golpeó la primera masa de agua. Debajo de esa línea la destrucción era absoluta.

Este árbol estaba a 11 kilómetros de donde se originó el megatsunami (Don Miller/USGS)

Posterioridad

En octubre de 2015, un desplazamiento de tierras en Icy Bay, Alaska, generó un tsunami que alcanzó unos 185 metros de altura y bajó por el valle barriendo árboles y escombros hasta perderse en el mar.

“Para alguien que ama la geología, ese es un evento emocionante”, explicó en un video sobre ese impacto reciente el físico Michael Gregg Loso.

“Pero solo puede ser emocionante porque lo descubrimos después de que sucedió y porque sabemos que nadie salió herido. Estas cosas van a estar pasando cada vez más, en montañas que solían estar apuntaladas por el hielo de los glaciares. Si quitas ese hielo del glaciar, si lo encoges o lo eliminas por completo, se cree que estas pendientes tendrán una mayor propensión a sufrir deslizamientos, porque no habrá nada que las sostenga. Es algo a lo que tendremos que prestar mucha más atención, ya que el retroceso de los glaciares hace que este fenómeno sea aún más frecuente”, advirtió.

La Asamblea General de las Naciones Unidas designó en el año 2015 la fecha del 5 de noviembre como el Día Mundial de Concienciación sobre los Tsunamis, con el objetivo de reconocer la importancia de estar preparados para estos eventos, así como de contar con sistemas de alerta temprana que protejan la vida de las personas y prevengan los daños causados por los tsunamis.

Un tsunami es una sucesión de olas gigantescas causadas por alguna perturbación bajo el agua. Normalmente se produce por un terremoto en el fondo del océano, aunque también pueden ser provocados por derrumbes en la costa, erupciones volcánicas, deslizamientos de tierras submarinas o incluso el impacto de un meteorito en el mar.

Esquema de cómo se cree que la ola fue provocada.

La zona afectada forma parte del Parque y Reserva Nacional Glacier Bay. Por suerte, los alrededores estaban deshabitados, aunque según la información revelada en ese momento se calcula que 39 personas perdieron la vida por el terremoto y posterior tsunami.

En el año 2010, los científicos analizaron una ladera cercana y se sorprendieron al detectar un cambio en la vegetación del lugar. Los geólogos pueden estimar la altura de la ola al estudiar la edad de la vegetación presente, el hecho de que la flora más joven se encuentre por encima de los 500 metros de altura indica que la gigantesca ola arrasó por completo con toda la bahía hasta dicha cota.

Cuando en 1786 se encontró por primera vez con la bahía de Lituya, el explorador francés Jean-François de Galaup La Pérouse quedó intrigado por una extraña línea en los bosques que rodeaban el estrecho fiordo en el sureste de Alaska.

Era como si los bosques «hubieran sido cortados limpiamente con una cuchilla de afeitar», anotó en su registro.

Fue la primera pista de que las aparentemente tranquilas y protegidas aguas de la bahía tenían un lado más destructivo. Otra pista llegó cuando envió tres pequeños botes para medir la profundidad del agua cerca de la entrada de la bahía. A pesar de que el tiempo estaba en calma, dos de los tres barcos volcaron después de ser arrastrados por las turbulentas corrientes de la marea que habían sido amplificadas por la estrecha forma del fiordo. Veintiséis hombres perdieron la vida y sus restos nunca se encontraron. Fue en su honor que a la única isla de la bahía se le dio el nombre de Cenotaph (Cenotafio, una palabra griega que significa «tumba vacía»).

El nombre resultó ser demasiado apropiado. En 1899, un terremoto desencadenó una ola gigante que destruyó una aldea nativa y ahogó a 5 personas en la isla. Otra ola de tsunami golpeó en 1936. Pero fue en 1958 cuando las impredecibles aguas de la bahía de Lituya crecieron de una manera verdaderamente apocalíptica. Después de que un terremoto de 7.8 estrangulara la cercana Falla de Fairweather, un deslizamiento de rocas envió a la bahía 90 millones de toneladas de roca, una cantidad equivalente a 8 millones de cargas de camiones volquete.

Los informes de testigos oculares describen una caótica y surrealista escena: temblores intensos durante varios minutos, un estallido explosivo y un glaciar destrozado que se elevaba cientos de metros en el aire. Luego, atravesaron la bahía una serie de olas gigantes salpicadas de trozos de hielo. Un pescador describió que su bote se elevaba sobre un saliente boscoso en la cresta de una ola y miraba los árboles debajo. La ola arrasó una cabaña en la isla Cenotaph y arrasó con un faro cerca de la boca de la bahía. Nunca más se supo de una pareja que había estado pescando cuando golpeó la ola.

La línea de daño en el bosque (los geólogos la llaman línea de corte) generalmente se extendía a una altura de 700 pies (200 metros) alrededor de gran parte de la bahía. En una cresta opuesta al tobogán, las olas salpicaron hasta una altura de 524 metros (1.720 pies), más alto que el Empire State Building de Nueva York. El evento en la bahía de Lituya sigue siendo una de las olas de tsunami más altas conocidas por la ciencia. La foto de arriba, tomada en 1958 después del tsunami, muestra el anillo de daños alrededor de gran parte de la bahía.

La evidencia de la ola cataclísmica todavía es visible desde el espacio más de 60 años después. Como se ve en la imagen de Landsat 8 en falso color (bandas 7-5-3) en la parte superior de la página, la línea de corte dañada todavía está impresa en el bosque. Las áreas verdes más claras a lo largo de la costa indican lugares donde los bosques son más jóvenes que los árboles más viejos (áreas más oscuras) que no fueron afectados por el tsunami. Cuando golpeó el tsunami, rompió todos los árboles y arrasó con casi toda la vegetación. Unas 2 millas cuadradas (4 kilómetros cuadrados) de bosque fueron cortadas y arrastradas por las olas del tsunami.

Una de las causas de las enormes olas en la bahía de Lituya fue que un trozo completo de un pico de montaña, estimado en 2.400 pies por 3.000 pies por 300 pies, se desprendió de un acantilado y cayó 2.000 pies. «En algunos aspectos, creó una reacción similar a la que habría ocurrido si un asteroide hubiera caído al agua», dijeron los autores de un resumen del Consejo de Política Sísmica de los Estados Occidentales.

La foto de arriba, tomada en 1958, muestra la cicatriz que quedó después del deslizamiento de rocas. Después de la explosión inicial, la estrecha forma de la bahía de Lituya y el fondo marino en forma de U también amplificaron las olas, haciendo que se agitaran hacia adelante y hacia atrás como olas en una enorme bañera.

Las escarpadas paredes de la bahía de Lituya, la geometría de su fondo marino y el hecho de que se cruza con una falla que a menudo es una fuente de terremotos sugiere que la bahía de Lituya verá más tsunamis en el futuro. Después de analizar la geología y la historia de la bahía durante años, un científico calculó que las olas gigantes ocurren allí una vez cada cuarto de siglo, una probabilidad de 1 en 9.000 en un día cualquiera.

La amenaza de las corrientes de marea que frustraron a La Pérouse es más constante. Desde la ola de 1958, se ha perdido un promedio de un barco de pesca al año en la entrada, informa Philip Fradkin en el libro Wildest Alaska: Journeys of Great Peril in Lituya Bay.

Tornados en los tres estados

Tornados en los tres estados

El 18 de marzo de 1925, uno de los brotes de tornados más mortíferos de la historia generó al menos doce tornados importantes y abarcó una gran parte del medio oeste y el sur de los Estados Unidos. En total, al menos 751 personas murieron y más de 2298[2]  resultaron heridas, lo que convirtió el brote en el brote de tornados más mortífero, el 18 de marzo en el día de tornados más mortífero y 1925 en el año de tornados más mortífero en la historia de Estados Unidos.[3] El brote generó varios tornados destructivos en Missouri, Illinois e Indiana el mismo día, así como tornados importantes en Alabama y Kansas. Además de los tornados confirmados, sin duda hubo otros de menor impacto, cuyas ocurrencias se han perdido en la historia.[4]

Brote de tornados en los tres estados

Condiciones meteorológicas y fenómenos atmosféricos, incluidos fuertes vientos tormentosos, granizo y tornados, observados el 18 de marzo de 1925.

Historia meteorológica

Formado: 17 de marzo de 1925

Disipado: 19 de marzo de 1925

Brote de tornado

Tornados: ≥12

Calificación máxima: Tornado F5

Duración: 7 horas

Vientos más fuertes: >300 mph (480 km/h)

Efectos generales

Muertes: 751

Lesiones: 2,298

Daño: Más de 17 millones de dólares (1925 dólares); al menos 1.400 millones de dólares (USD de 1997) 2.550 millones de dólares (USD de 2023) [1] [nb 1]

Zonas afectadas: Medio oeste y sureste de Estados Unidos

El brote incluyó el tornado tri-estatal, el desastre más mortífero en Illinois, el tornado más mortífero en la historia de Estados Unidos y el segundo más mortífero registrado en la historia mundial.[5] [6] [7] La ​​huella de 352 km (219 millas) de largo que dejó el tornado, cuando cruzó desde el sureste de Missouri, a través del sur de Illinois y luego hacia el suroeste de Indiana, es también la más larga jamás registrada.[8] El reanálisis meteorológico moderno ha sugerido que la longitud extremadamente larga del camino y la vida útil reportadas en los relatos históricos se atribuyen quizás de manera más plausible a múltiples tornados independientes que pertenecen a una familia de tornados, en lugar de a un tornado único y continuo.[4] Aunque no está clasificado oficialmente por la NOAA, el tornado de tres estados es reconocido por la mayoría de los expertos (como Tom Grazulis[9] y Ted Fujita[10]) como un tornado F5, la clasificación de daño máximo emitida en la escala de Fujita.[11] [nb 2] [nb 3] [nb 4]

Fondo

Pista del tornado de los tres estados

Durante un estudio de revisión de seis años del tornado de tres estados publicado en 2013, se obtuvieron nuevos datos de superficie y altitud y se utilizó un reanálisis meteorológico, lo que aumentó significativamente el conocimiento de los antecedentes sinópticos e incluso de mesoescala del evento. Desde finales del invierno hasta principios de la primavera de 1925 fueron más cálidos y secos de lo normal en gran parte del centro de Estados Unidos. Aparentemente hubo una cresta persistente en el oeste de EE. UU., con un patrón de depresión en el centro de EE. UU.[4] El ciclón extratropical que estableció el escenario sinóptico para el brote se centró sobre el noroeste de Montana a las 7:00 am CST (13:00  UTC) del 17 de marzo. Mientras tanto, un área difusa de baja presión superficial se centró cerca de Denver, Colorado, en asociación con una artesa de sotavento. Los frentes ocluidos se extendieron desde la Bahía de Hudson hacia el suroeste hasta los estados de las Llanuras del norte y hasta la vaguada de sotavento. El ciclón sinóptico se movió hacia el sur-sureste a través de los estados montañosos hasta el este de Colorado. Un frente cálido se extendía a lo largo de la costa del Golfo, separando el aire cálido y húmedo del clima frío y lluvioso con áreas de niebla que se extendían desde Texas hasta las Carolinas. Existía una masa de aire tropical continental (cT) bien mezclada a principios de temporada sobre el oeste de Texas y el norte de Nuevo México. Al este de este aire caliente y seco, se advertía aire boyante tropical marítimo (mT) desde el Golfo de México . Simultáneamente, una vaguada de onda corta en niveles medios y altos probablemente se acercó a la costa noroeste de los EE. UU. y se movió rápidamente a través de la cresta persistente, luego excavó hacia el sureste a través de la Gran Cuenca y las Montañas Rocosas centrales y emergió en las Llanuras sobre Colorado. Esto inició una ciclogénesis de ” Colorado bajo“.[4]

A las 7:00 am CST del 18 de marzo, el área de baja presión en la superficie, a aproximadamente 1003  hPa (29,6  inHg ), se movió hacia el extremo noreste de Oklahoma, mientras que el frente cálido se disparó hacia el norte hacia la circulación, donde el frente luego se extendió hacia el este. Un frente frío polar marítimo (mP) se extendió hacia el suroeste a través del este de Texas y se formó una línea seca directamente al sur de la baja. La onda corta abierta, probablemente con una inclinación algo negativa, continuaba acercándose desde el noroeste y un aparente límite de salida se movió justo al sur del frente cálido sobre el noreste de Arkansas y el noroeste de Tennessee. Varios canales de presión débiles atravesaban el sector frío sobre el centro-norte de Estados Unidos. Las temperaturas de la superficie en el sector cálido cerca de la línea seca y el frente cálido oscilaron entre 65 y 75 °F (18 y 24 °C), y el punto de rocío fue de 60 a 65 °F (16 y 18 °C), con valores más altos más lejos. hacia el sur y aumentando con el tiempo a medida que el área de baja presión cada vez más profunda continuó aspirando aire del Golfo de México. Esto resultó en aire inestable y bases de nubes más bajas , o alturas LCL bajas , lo que favorece la tornadogénesis. Desde el sureste de Kansas hasta Kentucky e Indiana, los aguaceros y tormentas de la madrugada al norte del frente bajo y cálido enfriaron y estabilizaron ese aire, retardando el avance del frente hacia el norte y provocando un marcado contraste de temperatura de norte a sur. Estas zonas baroclínicas también están asociadas con tormentas de tornados. Delante de la línea seca de la superficie, que es poco común en zonas tan al este como el río Mississippi,[21] un aparente “golpe seco” de aire en lo alto sirvió para aumentar aún más la inestabilidad. Al mismo tiempo, una inversión de tope probablemente suprimió las tormentas en todo el sector cálido, dejando a la supercélula de los tres estados intacta por la convección cercana.[4]

A las 12:00 pm CST (18:00 UTC), la depresión superficial cada vez más profunda estaba centrada sobre el centro-sur de Missouri, el eje de onda corta se movía hacia el este y estaba orientado sobre el este de Oklahoma, y ​​la línea seca avanzaba rápidamente hacia el este, directamente al sur de la baja. a medida que el frente cálido, situado al este de la zona baja, se desplazaba lentamente hacia el norte. Las nubes de la mañana se despejaron al mediodía en gran parte de la trayectoria final del tornado de tres estados. Una depresión de presión pronunciada se extendió al noreste de la baja y señaló su trayectoria futura cuando se formó una depresión prefrontal al sureste de la baja delante de la línea seca. También es posible que se haya estado formando un bulto en la línea seca ligeramente al sur de la baja, y los vientos en la superficie del sur al sureste estaban retrocediendo y aumentando con el tiempo en todo el sector cálido. La supercélula de los tres estados se formó en un área muy favorable justo delante del punto triple donde se unían el frente frío, el frente cálido y la línea seca. La supercélula se inició muy cerca de la baja superficie y se movió hacia el este-noreste, más rápido que la baja, de modo que la tormenta se desvió gradualmente al este de la trayectoria de la baja. La supercélula permaneció cerca de este “punto óptimo” durante un período prolongado, ya que también viajó cerca del frente cálido altamente baroclínico (probablemente justo al otro lado del lado frío del límite) durante varias horas.[4]

Trayectoria de tormentas de tornados en los tres estados y otros tornados ese día de Monthly Weather Review , abril de 1925.[22] La información sobre la temperatura, la presión y otros tornados puede no ser precisa.

A las 2:00 pm CST (20:00 UTC), la depresión se centró ligeramente al sur-suroeste de St. Louis, Missouri, cuando la supercélula de los tres estados se acercaba al río Mississippi. Otras tormentas en el sector cálido, alejadas de la supercélula Tri-State, se iniciaron alrededor de las 3:00 pm CST (21:00 UTC). Alrededor de las 4:00 pm CST (22:00 UTC), la presión central de la baja bajó a alrededor de 998 hPa (29,5 inHg), centrada sobre el centro-sur de Illinois, mientras la supercélula se movía hacia Indiana. Esta presión no es particularmente baja en comparación con muchas otras configuraciones de brotes, pero el gradiente de presión fue fuerte, lo que indujo fuertes vientos de gradiente y una advección significativa en el sector cálido. Un chorro muy fuerte de bajo nivel también se encontraba justo encima de la superficie a medida que los vientos cambiaban con la altura, lo que daba como resultado una curvatura de bajo nivel y largas hodógrafas. Por lo tanto, existía una fuerte cizalladura del viento, con una pronunciada cizalladura direccional probablemente en las proximidades del frente cálido, con vientos en el nivel de altura de 700 hPa de oeste a suroeste alrededor de 70 mph (110 km/h) y vientos en el nivel de 500 hPa alrededor de 90-110 mph (140–180 km/h). Las hodógrafas teóricas arrojaron valores estimados de helicidad ambiental relativa de la tormenta (SREH) de 340 m2 s−2 en las proximidades de la trayectoria de la supercélula Tri-State. Fuertes tormentas ahora se encontraban dispersas por todo el sector cálido y una línea de tormentas severas se estaba produciendo cerca de la línea seca. La supercélula de los tres estados parecía todavía discreta y aislada, con una fuerte tormenta al norte de El Cairo, Illinois, situada bastante al sur.[4]

A las 6:00 pm CST (00:00 UTC), el eje de onda corta estaba sobre el este de Missouri y se elevaba hacia el noreste. A las 7:00 pm CST (01:00 UTC), la depresión se registró cerca de Indianápolis, Indiana, con numerosas tormentas al este y al sur de la depresión y una línea de turbonada que se movía hacia el sureste de EE. UU. La advección de aire frío detrás del fuerte frente frío alimentó el ciclón mientras nieve y aguanieve caían desde el este de Iowa hasta el centro de Michigan. A las 7:00 am CST del 19 de marzo, la depresión se estaba profundizando y elevándose rápidamente hacia el noreste, hacia Canadá.

Tornado de tres estados

Tornado triestatal de 1925

La trayectoria del tornado de los tres estados. La tormenta cubrió una distancia de más de 352 kilómetros (219 millas) en sus tres horas y media de vida, viajando a velocidades superiores a 110 km/h (70 millas por hora).

Historia meteorológica

Duración: 3 horas, 45 minutos

Formado: 18 de marzo de 1925 12:45 pm CST (UTC-06:00) Condado de Reynolds, Misuri

Disipado: 18 de marzo de 1925 4:30 pm CST (UTC-06:00) Condado de Pike, Indiana

Tornado F5: en la escala fujita

Longitud de la trayectoria: 219 millas (352 kilómetros)

Vientos más fuertes: >300 mph (480 km/h)

Efectos generales

Muertes: 695 (el tornado más mortífero en la historia de Estados Unidos)

Lesiones: 2.027

Daño: $17 millones (1925 USD) $284 millones (2023 USD)

Zonas afectadas: Sur de Misuri, Illinois, Indiana

El tornado fue visto por primera vez como un embudo de condensación relativamente pequeño y muy visible en las escarpadas colinas boscosas del municipio de Moore, condado de Shannon, Missouri, alrededor de las 12:40 pm CST. Sin embargo, probablemente se trataba de un miembro separado de la familia de tornados, y el miembro principal probablemente comenzó en el condado de Reynolds, al oeste-noroeste de Ellington, unos cinco minutos después.[8] La primera muerte ocurrió alrededor de la 1:01 pm CST (19:01 UTC), cuando un granjero fue tomado por sorpresa al norte-noroeste de Ellington.

El tornado aceleró hacia el noreste, avanzó hacia el condado de Iron y azotó la ciudad minera de Annapolis. En cuestión de minutos, dos personas murieron y el 90% de la ciudad quedó arrasada. Luego, el tornado azotó la ciudad minera de Leadanna, donde la maquinaria minera y varias estructuras quedaron destruidas.[cita necesaria] Luego cruzó hacia las áreas escasamente pobladas del condado de Madison al sur de Fredericktown, donde cerca de Cherokee Pass el tornado comenzó a crecer constantemente.[29]

En el condado de Bollinger, 32 niños resultaron heridos cuando dos escuelas sufrieron daños. Varias casas y granjas quedaron completamente destruidas cerca de Lixville, donde un granjero y dos niños murieron, y un tercer niño murió a causa de sus heridas una semana después de la tormenta. También se observó una profunda socavación del suelo cerca de la ciudad de Sedgewickville. El tornado arrastró láminas de hierro a una distancia de hasta 80 kilómetros.

Al cruzar hacia el condado de Perry, el tornado supuestamente desarrolló un doble embudo cuando azotó la ciudad de Biehle, destruyendo muchas casas dentro y alrededor de la ciudad y matando a dos personas. En Brazeau, otro granjero resultó gravemente herido y murió cuatro días después. Muchas otras casas y granjas también fueron completamente arrasadas cerca de Frohna, donde una mujer murió y otra murió a causa de sus heridas diez días después.[ cita necesaria] [30] En total, al menos 12 personas (posiblemente más) murieron y otras 200 resultaron heridas en Missouri.[31]

Ruinas de la escuela Longfellow, Murphysboro, Illinois, donde murieron 17 niños. La tormenta azotó la escuela alrededor de las 2:30 p.m. hora local.

Luego, el tornado cruzó el río Mississippi hacia el sur de Illinois, descortezó árboles y arrasó profundamente el suelo en áreas rurales antes de golpear la ciudad ribereña de Gorham a las 2:30 pm CST (20:30 UTC), esencialmente destruyendo toda la ciudad. Casi todas las estructuras en Gorham fueron arrasadas o arrasadas y, según informes, las vías del ferrocarril fueron arrancadas del suelo.[cita necesaria] Más de la mitad de la población de la ciudad resultó herida o muerta; 30 murieron en la tormenta inmediata y 170 resultaron heridos, seis de los cuales murieron más tarde.[32] [33]

Continuando hacia el noreste a una velocidad promedio de 62 mph (100 km/h) (y hasta 73 mph (117 km/h)), el tornado abrió una franja de casi 1 mi (1,6 km) de ancho a través de la ciudad de Murphysboro. un próspero centro de transporte de carbón y una ciudad ferroviaria de 10.000 habitantes. El tornado arrasó todo excepto el extremo sureste de la ciudad, donde muchos vecindarios de clase trabajadora densamente poblados vieron algunos de los trabajos más horribles de la tormenta. En algunas zonas, hileras enteras de casas fueron arrasadas y arrasadas.[34] Muchas otras estructuras también resultaron dañadas o destruidas en toda la ciudad, incluida la tienda del ferrocarril M&O, donde murieron 35 personas. Las escuelas de la zona también quedaron devastadas, con 17 estudiantes asesinados en la escuela Longfellow y otros nueve en la escuela Logan.[cita necesaria] Después de que pasó el tornado, se encendieron grandes incendios que arrasaron los escombros, quemando vivos a muchos de los supervivientes atrapados. En total, 188 personas murieron en la tormenta inmediata a Murphysboro, incluidas al menos 20 que nunca fueron identificadas. La cifra oficial de heridos fue la asombrosa cifra de 623, mientras que otras fuentes afirman que podría haber sido mayor. De los heridos, 46 más murieron más tarde, lo que eleva el número de muertos por la tormenta en Murphysboro a 234, siendo hasta la fecha el más alto causado por un tornado en cualquier ciudad de los Estados Unidos.[35]

Luego, el tornado azotó la ciudad agrícola de De Soto, que en una escala paralela a Gorham quedó prácticamente destruida. Cincuenta y seis personas murieron en la tormenta inmediata y otras 105 resultaron heridas, cinco de las cuales murieron más tarde, y muchas casas fueron arrasadas.[36] Treinta y tres de las muertes fueron estudiantes que murieron en el colapso parcial de la Escuela De Soto, el peor número de muertes por tornados en una sola escuela en la historia de Estados Unidos.[35] También fue asesinado en De Soto el ayudante del sheriff del condado de Jackson, George Boland. Mientras patrullaba cuando llegó la tormenta, el tornado lo levantó del suelo y desapareció en el embudo. Su cuerpo nunca fue encontrado.[37]

Después de salir de De Soto, el tornado azotó la esquina noroeste del condado de Williamson, evitando por poco la ciudad de Hurst y golpeando la pequeña aldea de Bush. Varias casas fueron arrasadas y se clavaron trozos de madera en la torre de agua de la ciudad. Según los informes, se levantaron y esparcieron pesados ​​ejes de ferrocarril por la zona ferroviaria [35] El tornado mató a 10 personas en Bush y sus alrededores, e hirió a otras 37, cuatro de las cuales murieron más tarde.[38]

Más al este, el tornado cruzó hacia el condado de Franklin, evitando por poco las ciudades de Royalton y Zeigler, devastando áreas rurales y matando a 25 personas, 20 de las cuales murieron inmediatamente y otras cinco en los días siguientes, antes de dirigirse hacia la gran ciudad minera de West. Francfort. El tornado azotó el lado noroeste de la ciudad, donde de manera similar a lo que se vio en Murphysboro, varios vecindarios densamente poblados, negocios y operaciones mineras fueron víctimas del tornado.[cita necesaria] En la mina Orient, el tornado volcó y hizo rodar un gran vertido de carbón de varias toneladas . Los daños extremos continuaron al este de la ciudad, cuando un caballete de ferrocarril fue arrancado de sus soportes y 300 pies (91 m) de vías de ferrocarril fueron arrancadas del suelo y arrastradas por el viento. La tormenta inmediata se cobró 81 vidas en West Frankfort, e hirió a la asombrosa cifra de 410, 21 de los cuales murieron más tarde, lo que elevó el número de muertos en la ciudad a 102.[39]

Varias pequeñas aldeas mineras de la zona fueron arrasadas, lo que provocó numerosas muertes.[34] En Caldwell, un pueblo minero al noreste de West Frankfort, 24 personas murieron en la tormenta, a las que más tarde se sumaron dos más heridos. La pérdida más grande que sufrió una sola familia fue la del tendero de Caldwell, Isaac ‘Ike’ Karnes, que perdió 11 miembros. La esposa de Karnes, una hija casada y su marido, una nuera y siete nietos, de edades comprendidas entre recién nacidos y siete años, murieron en el tornado.[40]

Más al noreste, el tornado destruyó completamente la pequeña ciudad de Parrish, matando a 28 personas e hiriendo a 60, cinco de las cuales murieron más tarde, elevando el número de muertos en Parrish a 33.[41] La destrucción de la ciudad fue tan completa que muchos residentes y empresas se mudaron y la ciudad nunca fue reconstruida. La tormenta continuó devastando más zonas rurales en el lado este del condado, cobrándose otras seis vidas. En total, la tormenta se cobró 192 vidas en el condado de Franklin: 159 en el impacto inmediato y otras 33 entre los heridos en las semanas siguientes.

El tornado procedió a devastar áreas rurales adicionales en los condados de Hamilton y White, cobrándose entre los dos condados 45 vidas e hiriendo a 140, 20 de los cuales murieron más tarde.[42] A medida que el tornado atravesó el condado de Hamilton al sur de McLeansboro, el tornado alcanzó su mayor ancho a 1,5 millas (2400 m). Decenas de granjas, casas, escuelas e iglesias fueron arrasadas, 28 personas murieron y nueve más de los heridos murieron más tarde. En el condado de White, el tornado pasó a solo dos millas al norte de Carmi, evitando las ciudades de Enfield y Crossville por solo unos cientos de metros. Otros 17 murieron y 11 de los heridos murieron posteriormente.

Ruinas de la ciudad de Griffin, Indiana, donde murieron 44 personas

Al cruzar el río Wabash, justo al norte de New Harmony, el tornado entró en Indiana. Rozando el extremo más septentrional del condado de Posey, el tornado azotó y demolió por completo la ciudad de Griffin, donde ni una sola estructura quedó intacta por la tormenta, y muchas fueron completamente arrasadas; 41 personas murieron en Griffin y en las áreas circundantes, otras 202 resultaron heridas y cinco murieron más tarde, lo que eleva el número de muertos en Griffin a 46.[43]

Después de salir de Griffin, el tornado giró ligeramente hacia el noreste al cruzar hacia el condado de Gibson, devastando áreas rurales y cortando la esquina noroeste de Owensville, lo que provocó nueve muertes. Luego, el tornado irrumpió en la gran ciudad industrial de Princeton, destruyendo gran parte del lado sur de la ciudad, matando a 38 personas e hiriendo a 152, seis de las cuales murieron más tarde.[44] Grandes secciones de barrios de Princeton fueron arrasadas y una fábrica de Heinz resultó gravemente dañada.[cita necesaria] El tornado viajó más de 10 millas (16 km) hacia el noreste, cruzando hacia el condado de Pike antes de finalmente disiparse alrededor de las 4:30 pm CST, cerca de Oatsville. En Indiana, al menos 95 (y probablemente más) murieron.[45]

Efectos no tornádicos

Se reportaron fuertes tormentas en una amplia zona que también incluía partes de Oklahoma, Michigan, Pensilvania, Virginia Occidental y Ontario. Se reportaron numerosos reportes de granizo y vientos en línea recta, con hasta 4+Se registró un granizo de 11 cm (1 ⁄ 2 pulgadas) de diámetro(en comparación, una pelota de softbol es 3+1 ⁄ 2 –3,8 pulgadas (8,9–9,7 cm) de diámetro). Lo que comenzó a primera hora de la tarde como tormentas supercelulares discretas finalmente se consolidó en una potente línea de turbonadas. Según todos los indicios, se trató de un brote generalizado con fuertes tormentas que se produjeron en lugares tan al este como Ohio, tan al suroeste como Luisiana y tan al sureste como Georgia [4]

Secuelas y recuperación

Cobertura periodística del tornado.

Inmediatamente después, los hospitales desde St. Louis hasta Evansville se vieron inundados de heridos y moribundos, mientras la tormenta hirió a más de 2.000 personas, 105 de las cuales murieron más tarde a causa de sus heridas. En Missouri, los trenes de socorro transportaron a los heridos más graves al norte, a St. Louis, mientras que el resto fue enviado a hospitales en Perryville y Cape Girardeau. En Gorham, donde la mitad de la población de la ciudad resultó herida, el Ferrocarril del Pacífico de Missouri trasladó a la mayoría de los heridos al norte, a East St. Louis, y al resto al sur, a El Cairo.[46]

El hospital de la ciudad de Murphysboro, donde varios cientos resultaron heridos, no estaba bien equipado para atender a las víctimas, lo que provocó que cientos de personas fueran enviadas en tren a otras ciudades una vez que se despejaron las líneas. Los heridos más graves fueron enviados en tren al Hospital Barnes de St. Louis.[47] Para la mayoría de los heridos, moribundos e indigentes de Murphysboro, la ciudad universitaria de Carbondale, a unas siete millas al sureste, proporcionó un refugio seguro. Sin embargo, en De Soto se produjo el caos ya que los afectados se dispersaron en tres direcciones diferentes; seis millas al sur hasta Carbondale, cinco millas al este hasta Hurst o, para muchos, catorce millas al norte hasta Du Quoin.[48] ​​Para las víctimas del tornado en Parrish, el alivio llegó desde Thompsonville, tres millas al sureste, donde un equipo de trabajadores ferroviarios del Ferrocarril Central de Illinois dirigido por un heroico médico de Iowa, condujo un tren directamente a la aldea demolida. El tren estaba cargado más allá de su capacidad con muertos, heridos y moribundos antes de dirigirse hacia el noroeste hasta el hospital de Benton.[49]

La tormenta cobró su última víctima el 3 de enero de 1926, cuando Gervais Burgess, un minero de carbón de 46 años de West Frankfort, murió a causa de las heridas sufridas en el tornado.[50]

Además de los muertos y heridos, miles de personas quedaron sin refugio ni comida. Se produjeron incendios que en algunos lugares llegaron a convertirse en conflagraciones, lo que exacerbó los daños.[51] Se informó de saqueos y robos, en particular de bienes de los muertos. La recuperación fue en general lenta y el acontecimiento supuso un duro golpe para la región.[cita necesaria]

Al final, se confirmó la muerte de un total de 695: 12 en Missouri, 95 en Indiana y 588 en Illinois. Tres estados, 14 condados y más de 19 comunidades, cuatro de las cuales fueron efectivamente borradas (varias de ellas y otras áreas rurales nunca se recuperaron), se encontraban en el camino del tornado, que duró una duración récord de tres horas y media. . Aproximadamente 15.000 viviendas fueron destruidas por el tornado de los tres estados.[52] Los daños totales se estimaron en 16,5 millones de dólares en dólares de 1925; Ajustado por los aumentos de población/riqueza e inflación, el costo es de aproximadamente 1.400 millones de dólares (USD de 1997), superado sólo por dos tornados extremadamente destructivos, cada uno de los cuales fue clasificado póstumamente como F4 , ambos en la ciudad de St. Louis, en 1896 y 1927.[1]

Nueve escuelas en tres estados fueron destruidas y 69 estudiantes murieron. Se destruyeron más escuelas y murieron más estudiantes (así como el récord de 33 muertes en una sola escuela en De Soto, Illinois) que en cualquier otro tornado en la historia de Estados Unidos.[11] Se produjeron muertes en muchas escuelas rurales. Contando a los que regresaron a casa de las escuelas y a los que murieron en las escuelas, el número de víctimas fue de 72 estudiantes.[53] Aproximadamente un tercio de las víctimas del tornado fueron niños. La cifra de 65 muertos en zonas rurales en los condados de Hamilton y White en el sureste de Illinois no tiene precedentes. El tornado mató al menos a 20 propietarios de granjas en el sureste de Illinois y el suroeste de Indiana, más que el total combinado de los siguientes cuatro tornados más mortíferos en la historia de Estados Unidos.[54]

Importancia meteorológica

Si bien no se tomaron fotografías ni carretes de película del tornado de los tres estados, ni se sabe que existan, los testigos describieron con frecuencia el tornado como una “niebla ondulante amorfa” o “nubes hirviendo en el suelo”, y engañó a las granjas que normalmente se preocupan por el clima. propietarios (además de personas en general) que no sintieron el peligro hasta que la tormenta llegó sobre ellos. Según los informes, el embudo de condensación a veces también estaba envuelto en abundante polvo y escombros, lo que probablemente lo oscurecía y lo hacía menos reconocible. La supercélula madre aparentemente pasó a una variedad de alta precipitación (HP) cuando golpeó el oeste de Frankfort, lo que significa que el tornado no era fácilmente visible a medida que se acercaba, ya que a menudo estaba envuelto en fuertes lluvias y granizo. El tornado muy fuerte (los meteorólogos modernos estiman que la velocidad de sus vientos superó las 300 millas por hora (480 km/h) en algunos lugares) mostró en ocasiones una apariencia inusual debido en parte a su tamaño (en un momento en Missouri, medía una milla completa de ancho) y la probable base de nubes bajas de su tormenta principal.[55]

El tornado estuvo a menudo acompañado de ráfagas de viento extremas durante todo su recorrido; la ráfaga que la acompañó aumentó periódicamente el ancho de la trayectoria del daño desde el promedio general de 0,75 millas (1,21 km), variando en ocasiones de 1 a 3 millas (1,6 a 4,8 km) de ancho.[11]

Durante mucho tiempo ha habido incertidumbre sobre si los informes originalmente reconocidos de una trayectoria de 219 millas (352 km) durante 3,5 horas representan un único tornado continuo o múltiples tornados de seguimiento independiente que pertenecen a una familia de tornados. Debido a la escasez de datos meteorológicos verificables desde el momento del evento y la aparente ausencia de cualquier registro de que un tornado se haya acercado a esta trayectoria y duración en los años posteriores, se han planteado dudas sobre la plausibilidad de la conclusión de que un solo tornado era responsable de ellos. Hasta la fecha no se ha llegado a ninguna conclusión definitiva y aún no se ha logrado una comprensión completa de lo ocurrido.

La teoría meteorológica moderna sobre la morfología y dinámica de los tornados y las supercélulas sugiere que es muy improbable que un solo tornado dure tal duración.[4] Posteriormente se ha determinado que varios otros relatos históricos de tornados de trayectoria muy larga (VLT) son producto de familias de tornados[56] (en particular, la familia de tornados de Charleston-Mattoon, Illinois de mayo de 1917 y la familia de tornados de Woodward, Oklahoma de abril de 1947). En años más recientes, se han producido algunos tornados y supercélulas del VLT: 12 tornados superaron las 100 millas (160 km) de longitud de trayectoria entre 1980 y 2012, y 60 desde 1950. [8] Sin embargo, las estimaciones más altas del Tri- La longitud de la trayectoria del tornado estatal sigue siendo mucho más larga que la del tornado verificado por el VLT más cercano. Sólo cuatro tornados han confirmado trayectorias de más de 200 kilómetros (124 millas) sin ser familias de tornados. Dos de ellos ocurrieron durante el Súper Brote de 2011, uno un EF5 y otro un EF4, otro ocurrió durante un brote en abril de 2010, calificado como EF4, y un cuarto ocurrió en diciembre de 2021, también calificado como EF4. Por otro lado, el análisis meteorológico no revela ningún registro de circunstancias de mesoescala análogas en la historia reciente, lo que significa que las condiciones climáticas que llevaron al tornado de los tres estados fueron aparentemente únicas. Ningún factor por sí solo explica la excepcional longitud y duración del camino, aunque el rápido avance del tornado, que promedió 59 mph (95 km/h), puede haberse traducido en una mayor distancia recorrida.[4]

En 2001, el experto en tornados Tom Grazulis escribió que las primeras 60 millas (97 km) de la ruta fueron probablemente el resultado de dos o más tornados, y que un segmento de 157 millas (253 km) de la longitud total del camino era aparentemente continuo.[57] Una investigación exhaustiva publicada en 2013 no encontró una resolución definitiva, pero localizó avistamientos y daños adicionales de tornados 15 millas (24 km) al oeste del comienzo previamente conocido del tornado y 1 mi (1,6 km) al este del final previamente conocido. ampliando la longitud total del camino de 16 millas (26 km) a 235 mi (378 km) de largo. Los científicos concluyeron que es probable que al menos parte de la trayectoria, tanto al principio como al final, haya sido causada por tornados separados. También localizaron un camino de 32 km (20 millas) (aparentemente creado en un período de aproximadamente 20 minutos) de un gran tornado que probablemente se generó a partir de la misma supercélula y estaba a unas 105 km (65 millas) al este-noreste del camino antes mencionado. finalizando. Esto eleva la longitud conocida de la familia de tornados de los tres estados a alrededor de 320 millas (510 km) en casi 5,5 horas.[8]

El estudio de 2013 concluye que es probable que el segmento de 280 km (174 millas) desde el centro del condado de Madison, Missouri hasta el condado de Pike, Indiana, fuera el resultado de un tornado continuo, y que el segmento de 243 km (151 millas) desde el centro de Bollinger El condado, Missouri, hasta el oeste del condado de Pike, Indiana, fue muy probablemente el resultado de un único tornado continuo. Cualquiera de estos dos valores todavía ostenta el récord de trayectoria de tornado más larga registrada. Sin embargo, se considera que este segmento del camino de 151 a 174 millas de largo (243 a 280 km) es más probable que sea continuo únicamente porque las observaciones fueron suficientemente densas, mientras que la porción de 219 millas de largo (352 km) desde el extremo occidental Desde el condado de Reynolds, Missouri, hasta el condado más occidental de Pike, Indiana, había varios espacios en los que faltaban testigos presenciales e informes de daños, debido principalmente a patrones dispersos de asentamientos humanos, pero incluso esto bien pudo haber sido continuo porque la alineación de los informes mostró una constante rumbo, lo que sugiere un solo tornado en lugar de una familia.[8]

Erupción del monte Pelée

Erupción del monte Pelée – 1902

La erupción de 1902 del Monte Pelée fue una erupción volcánica en la isla de Martinica en el Arco Volcánico de las Antillas Menores del Caribe oriental, que fue una de las erupciones más mortíferas de la historia registrada. La actividad eruptiva comenzó el 23 de abril como una serie de erupciones freáticas desde la cumbre del monte Pelée. En cuestión de días, el vigor de estas erupciones superó todo lo observado desde que los europeos colonizaron la isla. Luego la intensidad disminuyó durante algunos días hasta principios de mayo, cuando las erupciones freáticas volvieron a aumentar. Los relámpagos cubrieron las nubes de la erupción y los vientos alisios arrojaron cenizas sobre las aldeas del oeste. Cayeron fuertes cenizas, que en ocasiones provocaron una oscuridad total. Algunos de los residentes afectados entraron en pánico y se dirigieron a la seguridad percibida de asentamientos más grandes, especialmente Saint-Pierre, a unos 10 km (6,2 millas) al sur de la cumbre de Pelée. Saint-Pierre recibió su primera caída de ceniza el 3 de mayo.[3]

Columna de erupción el 27 de mayo de 1902.

Volcán: Monte Pelée

Fecha de inicio: 23 de abril de 1902[1]

Fecha final: 5 de octubre de 1905[1]

Tipo: Freático, Peléano

Ubicación: Martinica, Francia

Coordenadas: 14°48′27″N 61°10′03″W

VEI: 4[1]

Impacto: Aproximadamente 29.930 muertes; La erupción más mortífera del siglo XX.[2]

El monte Pelée permaneció relativamente tranquilo hasta la tarde del 5 de mayo, cuando una corriente de lodo arrasó un río en el flanco suroeste del volcán, destruyendo un ingenio azucarero. El flujo masivo sepultó a unas 150 personas y generó una serie de tres tsunamis al llegar al mar. Los tsunamis arrasaron la costa y dañaron edificios y barcos. Las explosiones se reanudaron la noche del 5 de mayo. A la mañana siguiente, partes de la columna de erupción se volvieron incandescentes, lo que significa que el carácter de la erupción había cambiado. Las erupciones freáticas finalmente habían dado paso a erupciones magmáticas cuando el magma llegó a la superficie. Estas erupciones continuaron durante el día y la noche siguientes.[3]

Una breve pausa fue rota por una tremenda erupción alrededor de las 8:00 am del 8 de mayo. Una oleada piroclástica (una nube de partículas de lava incandescentes suspendidas por gases abrasadores y turbulentos) se desplazó a la velocidad de un huracán por el flanco suroeste del volcán y llegó a Saint-Pierre a las 8:02 am. Escapar de la ciudad era prácticamente imposible. Casi todos los habitantes de la ciudad propiamente dicha (unas 28.000 personas) murieron, quemados o enterrados por la caída de mampostería. Las cenizas calientes provocaron una tormenta de fuego, alimentada por edificios destrozados e innumerables barriles de ron. Un superviviente dentro de la ciudad era un prisionero despistado que fue encerrado en una celda subterránea sin ventanas y luego fue descubierto por los trabajadores de rescate.[4] Los únicos supervivientes fueron unas pocas decenas de personas atrapadas dentro de los márgenes de la nube, que sufrieron graves quemaduras.[3]

La actividad explosiva del 20 de mayo provocó otras 2.000 muertes mientras los rescatistas, ingenieros y marineros llevaban suministros a la isla. Una poderosa erupción el 30 de agosto generó un flujo piroclástico que provocó la muerte de más de 800 personas. La erupción continuó hasta octubre de 1905.

Antes de la erupción

El monte Pelée (montaña pelada) es un volcán que domina la isla con una altura en la actualidad de 1397 ms.n.m. En 1902 la altura era mucho mayor.

Antes de la erupción de 1902, ya a mediados del siglo XIX, había signos de una mayor actividad de fumarolas en el cráter Étang Sec (Estanque Seco) cerca de la cumbre.[5] Las erupciones freáticas relativamente menores que ocurrieron en 1792 y 1851 fueron evidencia de que el volcán estaba activo y potencialmente peligroso. Los indígenas caribes estaban conscientes de la actividad volcánica de la montaña debido a erupciones anteriores en la antigüedad.

La isla de Martinica y la localización de la erupción, “Le Petit Journal”, 1902.

Las erupciones comenzaron el 23 de abril de 1902. A principios de abril, los excursionistas notaron la aparición de vapores sulfurosos que emanaban de las fumarolas cercanas a la cima de la montaña. Esto no se consideró importante, ya que en el pasado habían aparecido y desaparecido fumarolas. El 23 de abril se produjo una ligera lluvia de cenizas en las laderas sur y oeste de la montaña, junto con actividad sísmica. El 25 de abril la montaña arrojó una gran nube que contenía rocas y cenizas desde su cima, donde se encontraba la caldera Étang Sec. El material expulsado no causó daños importantes. El 26 de abril los alrededores quedaron cubiertos de ceniza volcánica procedente de una explosión; Las autoridades públicas todavía no ven ningún motivo de preocupación.

El 27 de abril, varios excursionistas subieron a la cima de la montaña y encontraron Étang Sec lleno de agua, formando un lago de 180 m (590 pies) de ancho. Había un cono de escombros volcánicos de 15 m (50 pies) de alto construido en un lado, alimentando el lago con un flujo constante de agua hirviendo. Se escucharon sonidos que se parecían a un caldero con agua hirviendo desde las profundidades del subsuelo. El fuerte olor a azufre se extendía por toda la ciudad, a 6,4 kilómetros del volcán, provocando malestar a personas y caballos. El 30 de abril, la Rivière des Pères y el río Roxelane crecieron, arrastrando rocas y árboles desde la cima de la montaña. Los pueblos de Prêcheur y Sainte-Philomène recibieron un flujo constante de ceniza.

A las 23:30 horas del 2 de mayo, la montaña produjo fuertes explosiones, terremotos y una enorme columna de denso humo negro. Cenizas y piedra pómez de grano fino cubrieron toda la mitad norte de la isla. Las explosiones continuaron a intervalos de 5 a 6 horas. Esto llevó al periódico local Les Colonies a posponer indefinidamente un picnic en la montaña previsto inicialmente para el 4 de mayo.[cita necesaria] Los animales de granja comenzaron a morir de hambre y sed, ya que sus fuentes de agua y alimentos estaban contaminadas con cenizas.

El sábado 3 de mayo, el viento empujó la nube de cenizas hacia el norte, aliviando la situación en Saint-Pierre. Al día siguiente, la lluvia de ceniza se intensificó y se cortó la comunicación entre Saint-Pierre y el distrito de Prêcheur. La nube de ceniza era tan densa que los barcos costeros temían atravesarla. Muchos ciudadanos decidieron huir de la ciudad, llenando al máximo las líneas de los vapores. El área estaba cubierta con una capa de fina ceniza blanca parecida a la harina.

El lunes 5 de mayo, la actividad pareció disminuir, pero alrededor de la 1:00 pm el mar retrocedió repentinamente unos 100 m (330 pies) y luego volvió, inundando partes de la ciudad, y apareció una gran nube de humo al oeste de la montaña. Una pared del cráter Étang Sec se derrumbó e impulsó una masa de agua hirviendo y lodo (un lahar) hacia el río Blanche, inundó la planta azucarera de Guérin y enterró a unas 150 víctimas a una profundidad de 60 m (200 pies) a 90 m (300 pies) de barro. Refugiados de otras zonas se apresuraron a llegar a Saint-Pierre. Esa noche, las perturbaciones atmosféricas desactivaron la red eléctrica, hundieron la ciudad en la oscuridad y aumentaron la confusión.

Mapa de las zonas afectadas por las erupciones. En gris oscuro la primera erupción y en gris claro, la segunda.

Al día siguiente, alrededor de las 02:00, se escucharon fuertes sonidos desde las profundidades de la montaña. El miércoles 7 de mayo, alrededor de las 04:00 horas, la actividad aumentó; las nubes de ceniza provocaron numerosos relámpagos volcánicos alrededor de la cima de la montaña, y ambos cráteres brillaron de color naranja rojizo en la noche. A lo largo del día, la gente iba abandonando la ciudad, pero más gente del campo intentaba encontrar refugio en la ciudad, aumentando su población en varios miles. Los periódicos seguían afirmando que la ciudad estaba a salvo. La noticia de la erupción del volcán Soufrière en la cercana isla de San Vicente tranquilizó a la población, que creía que era una señal de que la presión interna del Monte Pelée estaba aliviando. Sin embargo, el capitán Marina Leboffe, de la barca Orsolina, abandonó el puerto con sólo la mitad de su cargamento de azúcar cargado, a pesar de las protestas de los transportistas, ante la negativa de las autoridades portuarias y bajo amenaza de arresto. A muchos otros civiles se les negó el permiso para salir de la ciudad.[6] El gobernador Louis Mouttet y su esposa permanecieron en la ciudad. Por la tarde, los temblores del Monte Pelée parecieron calmarse nuevamente.

Fase climática

Evacuados en Rue du Pavé, Fort-de-France después de la erupción de 1902

El jueves 8 de mayo por la mañana, el operador de telégrafos del turno de noche enviaba los informes sobre la actividad del volcán al operador de Fort-de-France , afirmando que no había novedades importantes; su última transmisión a las 07:52 fue “Allez”, entregando la línea al operador remoto. Al segundo siguiente, la línea telegráfica se cortó. La ladera superior de la montaña se abrió y una densa nube negra salió disparada horizontalmente. Una segunda nube negra rodó hacia arriba, formando una gigantesca nube en forma de hongo y oscureciendo el cielo en un radio de 80 km (50 millas). Posteriormente se calculó que la velocidad inicial de ambas nubes era de más de 160 km (100 millas) por hora.[7] La ​​oleada piroclástica horizontal abrazó el suelo y descendió a toda velocidad hacia la ciudad de Saint-Pierre, pareciendo negra y pesada, brillando desde dentro. Consistía en vapor sobrecalentado y gases y polvo volcánicos, con temperaturas superiores a los 1.075 °C (1.967 °F). En menos de un minuto alcanzó y cubrió toda la ciudad, encendiendo instantáneamente todo lo combustible. El barco de reparación de cables, CS Grappler, que flotaba en alta mar, fue incendiado y hundido por la marejada, con la pérdida de todos sus tripulantes.[8]

Siguió una ráfaga de viento, esta vez hacia la montaña. Luego llegó un aguacero de media hora de lluvia fangosa mezclada con cenizas. Durante las siguientes horas, se cortó toda comunicación con la ciudad. Nadie sabía qué estaba pasando, ni quién tenía autoridad sobre la isla, ya que el gobernador era inalcanzable y se desconocía su estatus.

Hay testigos anónimos de la erupción, probablemente supervivientes de los barcos en el momento de la erupción. Un testigo dijo que “la montaña explotó en pedazos; no hubo ninguna advertencia”, mientras que otro dijo que “era como una refinería de petróleo gigante”. Uno dijo: “la ciudad desapareció ante nuestros ojos”. El área devastada por la nube piroclástica cubrió aproximadamente 21 km2 (8 millas cuadradas), y la ciudad de Saint-Pierre fue la más afectada por los daños.

En el momento de la erupción, Saint-Pierre tenía una población de aproximadamente 28.000 habitantes, que se había engrosado con refugiados de las explosiones menores y los flujos de lodo emitidos por primera vez por el volcán. La leyenda cuenta anteriormente que de los 30.000 habitantes de la ciudad, sólo hubo dos supervivientes: Louis-Auguste Cyparis, un delincuente recluido en una celda subterránea de la cárcel de la ciudad por herir a un amigo con un machete, y Léon Compère-Léandre, un hombre que vivía en las afueras de la ciudad. En realidad, hubo varios supervivientes que lograron salir de los límites de la zona de la explosión.[cita necesaria] Muchos de estos supervivientes sufrieron graves quemaduras y algunos murieron más tarde a causa de sus heridas. Algunos se dirigieron a Le Carbet, justo al sur de Saint-Pierre, detrás de una cresta que protegía esa ciudad de lo peor del flujo piroclástico; Los supervivientes fueron rescatados en la playa por funcionarios de Martinica.[9]

Restos de San Pedro

Compère-Léandre declaró lo siguiente cuando se le preguntó sobre su supervivencia:

Sentí que soplaba un viento terrible, la tierra empezó a temblar y el cielo de repente se oscureció. Me di vuelta para entrar a la casa, subí con gran dificultad los tres o cuatro escalones que me separaban de mi habitación, y sentí que me ardían los brazos y las piernas, también el cuerpo. Me dejé caer sobre una mesa. En ese momento otros cuatro buscaron refugio en mi habitación, llorando y retorciéndose de dolor, aunque sus prendas no mostraban señales de haber sido tocadas por las llamas. Al cabo de diez minutos, una de ellas, la joven Delavaud, de unos diez años, cayó muerta; los demás se fueron. Me levanté y fui a otra habitación, donde encontré al padre Delavaud, todavía vestido y acostado en la cama, muerto. Estaba morado e inflado, pero la ropa estaba intacta. Enloquecido y casi vencido, me tiré en una cama, inerte y esperando la muerte. Mis sentidos volvieron a mí tal vez al cabo de una hora, cuando vi el techo ardiendo. Con fuerzas suficientes, con las piernas sangrando y cubiertas de quemaduras, corrí hacia Fonds-Saint-Denis, a seis kilómetros de Saint-Pierre.[6]

Una mujer, una empleada doméstica, también sobrevivió al flujo piroclástico pero murió poco después.[cita necesaria] Dijo que lo único que recordaba del evento fue un calor repentino. Murió poco después de ser descubierta. Un tercer superviviente fue Havivra Da Ifrile, una niña de 10 años que había remado hasta refugiarse en una cueva.[10] Entre las víctimas se encontraban los pasajeros y tripulaciones de varios barcos atracados en Saint-Pierre.

Restos del Roraima antes de hundirse

Se cree que un barco de vapor de pasajeros, el Roraima, desaparecido el 26 de abril, quedó envuelto por las cenizas de una explosión preliminar. Sin embargo, llegó al puerto de Saint-Pierre a las 06:30, poco antes de la erupción, y fue incendiado por el flujo piroclástico. Posteriormente se hundió; sus restos todavía están presentes frente a la costa de Saint-Pierre. Veintiocho miembros de su tripulación y todos los pasajeros excepto dos (un niño y su enfermera criolla) murieron a causa de la nube.[6]

Alivio

Aproximadamente a las 12:00, el gobernador en funciones de Martinica envió el crucero Suchet para investigar lo sucedido y el buque de guerra llegó a la ciudad en llamas alrededor de las 12:30. El intenso calor hizo retroceder a los grupos de desembarco hasta cerca de las 15:00, cuando el capitán desembarcó en la Place Bertin, la plaza arbolada y con cafés cerca del centro de la ciudad. No había ningún árbol en pie; los troncos desnudos, chamuscados y desnudos, yacían boca abajo, arrancados de raíz. El suelo estaba lleno de muertos. El fuego y un hedor sofocante impidieron una exploración más profunda de las ruinas en llamas.

14 de mayo de 1902 restos de víctimas

Vistas de St. Pierre, ruinas (¿Ludger Sylbaris a la izquierda?)

 

Mientras tanto, algunos supervivientes habían sido rescatados del mar por pequeñas embarcaciones; eran marineros que habían caído al agua por el impacto de la explosión y que habían estado aferrados a los restos del naufragio durante horas. Todos resultaron gravemente quemados. En el pueblo de Le Carbet, protegido de la nube de fuego por un alto promontorio en el extremo sur de la ciudad, hubo más víctimas, también gravemente quemadas; pocos de ellos vivieron más de unas pocas horas.[cita necesaria]

El área de devastación cubrió unos 20 km2 (10 millas cuadradas). Dentro de esta zona, la aniquilación de vidas y propiedades fue total; afuera había una segunda zona claramente definida donde hubo víctimas, pero los daños materiales fueron menores, mientras que más allá había una franja en la que la vegetación estaba quemada pero se salvaban las vidas. Muchas víctimas estaban en actitudes indiferentes, con rasgos tranquilos y reposados, lo que indicaba que la explosión los había alcanzado sin previo aviso; otros estaban contorsionados por la angustia.[cita necesaria] La ropa había sido arrancada de casi todas las víctimas atropelladas al aire libre. Algunas casas quedaron casi pulverizadas; Era imposible incluso para aquellos familiarizados con la ciudad identificar los cimientos de los puntos de referencia de la ciudad. La ciudad ardió durante días. Grupos de saneamiento penetraron gradualmente en las ruinas para deshacerse de los muertos mediante la quema; El entierro no fue posible debido al número de muertos. Miles de víctimas yacían bajo un sudario de cenizas, amontonadas en pilas de metros de profundidad, apelmazadas por las lluvias; muchos de estos cuerpos no fueron recuperados durante semanas y pocos fueron identificables.

Estados Unidos rápidamente ofreció ayuda a las autoridades de Martinica. El 12 de mayo, el presidente estadounidense Theodore Roosevelt ordenó a los Secretarios de Guerra, Marina y Tesoro que iniciaran medidas de ayuda de inmediato.[11] Varios barcos estadounidenses fueron enviados a la isla a toda prisa, a saber, el crucero Cincinnati, que se encontraba en Santo Domingo; el Dixie, un carguero reconvertido que transportaba raciones, suministros médicos y médicos del ejército;[4] y el remolcador Potomac de la Armada en San Juan, Puerto Rico. El presidente Roosevelt pidió al Congreso una asignación inmediata de 500.000 dólares para asistencia de emergencia a las víctimas de la calamidad. El Presidente dijo: “Una de las mayores calamidades de la historia ha caído sobre nuestra vecina isla de Martinica… La ciudad de St. Pierre ha dejado de existir… El gobierno de Francia… nos informa que Fort-de-France y toda la isla de Martinica siguen amenazadas, por lo que solicitan que, con el fin de rescatar a las personas que se encuentran en peligro de muerte y amenazadas de hambre, el gobierno de los Estados Unidos envíe lo antes posible los medios para transportarlas. de la isla asolada.” El Congreso de Estados Unidos votó a favor de 200.000 dólares de asistencia inmediata y convocó audiencias para determinar qué suma mayor podría ser necesaria cuando se pudiera conocer la naturaleza completa del desastre. En un llamamiento a fondos públicos, el Presidente autorizó a los administradores de correos a recibir donaciones para socorrer a las víctimas; un comité nacional de ciudadanos destacados se hizo cargo del fletamento de los barcos de suministro.

Canadá, el Reino Unido, Alemania, Francia, Italia, Dinamarca, Japón, Rusia y el Vaticano también ofrecieron ayuda.

Actividad posterior

La columna volcánica del monte Pelée

El 20 de mayo, una segunda erupción similar a la primera tanto en tipo como en fuerza destruyó lo que quedaba de Saint-Pierre, matando a 2.000 rescatistas, ingenieros y marineros que llevaban suministros a la isla.[12] Durante una poderosa erupción el 30 de agosto, un flujo piroclástico se extendió más al este que los flujos del 8 y 20 de mayo. Aunque no fue tan poderoso como las dos erupciones anteriores, el flujo piroclástico del 30 de agosto golpeó Morne Rouge, matando al menos a 800 personas,[13] Ajoupa-Bouillon[14] (250 muertes),[13] y partes de Basse-Pointe (25 víctimas mortales) y Morne-Capot, matando a 10.[13] Un tsunami causó algunos daños en Le Carbet.[14] Hasta la fecha, esta fue la última erupción fatal del Monte Pelée.[13]

A partir de octubre de 1902, una gran columna de lava creció desde el suelo del cráter Étang Sec, alcanzando un ancho máximo de aproximadamente 100 a 150 m (300 a 500 pies) y una altura de aproximadamente 300 m (1000 pies). Llamada “Aguja de Pelée” o “Torre de Pelée”, crecía en altura hasta 15 m (50 pies) por día, con más o menos el mismo volumen que la Gran Pirámide de Egipto. Se volvió inestable y se derrumbó en un montón de escombros en marzo de 1903,[15] después de 5 meses de crecimiento.

La erupción finalmente terminó el 5 de octubre de 1905.[1]

Efectos

El estudio de las causas del desastre marcó el inicio de la vulcanología moderna con la definición y el análisis del peligro volcánico más mortífero: los flujos y oleadas piroclásticas, también conocidos como nuées ardentes (fr: nubes ardientes). Las erupciones de tipo similar se conocen ahora como “erupciones de Peléan“. Entre los que estudiaron el monte Pelée se encontraban Antoine Lacroix y Angelo Heilprin. Lacroix fue el primero en describir el fenómeno nuée ardente (flujo piroclástico). [16] [17]

La destrucción causada por la erupción de 1902 fue rápidamente publicitada por los medios de comunicación modernos.[cita necesaria] Llamó la atención del público y de los gobiernos sobre los peligros y peligros de un volcán activo.

Esta erupción ha sido considerada una de las más violentas del siglo XX, solo siendo superada por las del monte Pinatubo en 1991, Volcán Santa María en 1902 y el monte Santa Helena en 1980. En muchos aspectos, los hechos se asemejan a los de Pompeya en el año 79.

Saint Pierre antes de la erupción (1902)

 

 

 

 

 

 

El vapor mixto SS Roraima anclado frente St. Pierre días antes de la erupción (al fondo, el Monte Pelée).

 

 

 

 

Aguja de lava formada después del cataclismo, fotografiada antes de su desmoronamiento.

 

 

 

 

 

 

Nube ardiente o flujo piroclástico fatal en descenso sobre St. Pierre.

 

 

 

Calle de St. Pierre después de la erupción.

 

 

Nube piroclástica sobre los restos de St.Pierre fotografiada el 6 de junio de 1902.

 

 

 

 

Ruinas de St.Pierre fotografiadas después del cataclismo de 1902.

 

 

 

 

 

Un hombre contemplando varias víctimas muertas durante la explosión.

 

 

 

 

Desastre del Urquiola

Desastre del Urquiola

Coordenadas: 43°22′00″N 8°23′00″O

Localización

País: España

Datos generales

Tipo: petrolero

Histórico

El desastre del Urquiola fue un derrame de petróleo en Galicia provocado por el hundimiento del buque petrolero Urquiola en 1976.

El petrolero Urquiola fue protagonista, el 12 de mayo de 1976, de una de las peores catástrofes ecológicas acaecidas en España. Ese día, el buque petrolero, portando una carga de petróleo para la empresa Petrolíber, sufrió un accidente a la entrada de la ría del Burgo en Galicia, cuando quedó embarrancado al encallar contra una aguja rocosa existente a la entrada del mismo que estaba mal señalizada, según afirmó posteriormente un práctico del puerto. Aunque en ese accidente el buque no sufrió grandes daños y su capitán pidió la entrada a puerto, la Comandancia de Marina tomó la decisión de sacarlo a alta mar para alejarlo a 200 millas de la costa.

En las maniobras para su alejamiento el barco sufrió más daños y en el quinto intento de rescate se incendió y explotó. El capitán murió intoxicado al quedarse a bordo hasta el último momento. El vertido de unas 100.000 toneladas de crudo que portaba anegó las rías de Betanzos, Ferrol y Ares.

El 4 de mayo de 1982, el Parlamento aprobó una iniciativa para que la Junta de Galicia solicitara al Gobierno español el pago de indemnizaciones a los pescadores afectados por la catástrofe. Estos comenzaron a percibirlas en 1986 finalizando los últimos pagos en noviembre de 1992. En 1985 una Sentencia del Tribunal Supremo dictaminó que el costo total para las arcas públicas del desastre fue de más de 7000 millones de pesetas.1

El petrolero Urquiola

El Urquiola fue un buque petrolero de bandera española de 276,54 metros de eslora, 39,07 de manga y 15,19 de calado. Construido por Astilleros Españoles, en su factoría de Sestao (Vizcaya) fue botado en junio de 1973, tenía un peso muerto de 111.225 toneladas.2​ Estando asegurado en 1.280 millones de las pesetas de entonces. La propulsión consistía en un motor principal de 25.000 BHP (Brake Horse Power, caballos efectivos de potencia al freno), cuatro generadores auxiliares para la potencia electrica del buque y tres calderas (una de generación de vapor a través de los gases de escape); podía alcanzar una velocidad máxima de 15 nudos. Llevaba tres turbo bombas que le permitían efectuar la descarga de crudo del buque en un plazo de 24 horas.

La tragedia

A las 08:20 horas del 12 de mayo de 1976 en la maniobra de entrada al Puerto de La Coruña, para efectuar la descarga en su refinería, toca unos bajos no señalados en las cartas. Ya con el barco detenido y una vez analizadas las averías, la Comandancia de Marina ordenó al Urquiola salir a la mar, lo que se produce a las 09:15 horas del mismo día. La maniobra se realiza por el mismo canal de la entrada, lo que sumado a que por la avería ocasionada en la maniobra de entrada, que le aumentaba el calado de proa en 2,5 metros, vuelve a tocar en la misma “aguja” causándole averías irreversibles que hacen que, tras una explosión registrada horas más tarde, arda por completo, consumiéndose con las llamas parte de su carga y vertiendo al mar otra parte causando una gran marea negra. Días más tarde con la ayuda del petrolero Camporraso, se trasiega al mismo el resto de la carga que todavía quedaba en su interior, en una operación bastante controvertida en su momento debido a su falta de seguridad.

Se hizo responsable de la tragedia al capitán del buque, Francisco Eduardo Rodríguez Castelo (único fallecido en la tragedia que murió de forma heroica tras las explosiones posteriores). Los tribunales lo exculparon, dando la razón a su familia, ya que ni la carta estaba actualizada y la Autoridad de Marina le obligó a ciabogar y salir por el mismo canal, con más calado por el agua embarcada tras la primera colisión, y con la marea más baja, por lo que la varada final fue inevitable.

Antecedentes de la tragedia

Entre los años 1953 y 1956 se levantó la carta n.º 9290, que se consideró la más idónea para acceder al puerto de La Coruña y fue la utilizada en la derrota del petrolero Urquiola veinte años más tarde.

Con la entrada en servicio de la refinería coruñesa (Petrolíber), en 1964, los petroleros que accedían al puerto de La Coruña fueron cada vez mayores, acentuando este hecho que, a partir del cierre del Canal de Suez en 1967, comenzaron a hacerse enormes. La Comandancia de Marina de La Coruña había sido notificada de la existencia de agujas por un buzo en 1967, y por una filial de Dragados y Construcciones en 1971. Según algunas fuentes, dos petroleros (se mencionan el Santiago y el Ildefonso Fierro) habían sufrido incidentes en ese mismo lugar aunque no tuvieron mayores consecuencias. En 1974 el capitán del Magdalena del Mar dio parte a la Comandancia sobre la existencia de la aguja rocosa que había detectado en el sonar de su barco.

Ante la posible existencia de agujas rocosas sin identificar se planteó, en 1976, realizar un nuevo levantamiento para hacer una nueva carta náutica aunque se mantiene el uso de la canal “N” para el acceso a la refinería. El Urquiola había usado, antes del accidente, este canal dieciséis veces para entrar cargado y sin novedad en “casi” todas las condiciones de marea.

Explosión y vertido

Tras el primer roce con el fondo a las 08:20 horas del 12 de mayo, y tras un primer informe de daños se detectó una entrada de crudo mezclado con agua en la cámara de bombas; se informó además que a la altura del 1E (contiguo al 1C) salía crudo al exterior, inundación en el cofferdam de proa, y a popa estribor, una pequeña pérdida de fuel al mar. Pasada una hora la situación estaba estabilizada con el petrolero adrizado y hocicado de proa unos 2,5 metros por la inundación del cofferdam y, por lo que se deduce, cuando menos del 1E. Con unos 18 metros de calado, desde el propio buque se informó a la Comandancia que era inconveniente (más bien imposible) acceder a la terminal, aunque con la sala de máquinas y la casi totalidad de los tanques de carga intactos, se podría de fondear, extender una barrera, trasegar a otro petrolero parte de la carga hasta reducir el calado y terminar el trabajo atracados al pantalán.

Hacia las 09:15 la Comandancia de Marina ordenó al Urquiola salir a la mar, con obligación de hacerlo “por el mismo canal por el que había entrado”. Semejante medida pretendía salvaguardar la ría de un desastre ecológico. Con su sobrecalado y habiendo bajado la marea 35 cm, a las 09:33, tras un choque, un enorme ruido y una fuerte vibración, el barco quedó súbitamente detenido en una situación muy próxima a donde había tocado fondo al entrar. Inmediatamente se ordenó “para” y se probó a dar avante y atrás, el buque estaban irremisiblemente trincados al fondo; días después los buceadores de la compañía de salvamento encontrarían un desgarrón en el casco de unos 60 metros de largo por 0,5 de ancho. Tras el impacto se produjo una escora de unos 10º a estribor y la proa se hundió hasta los escobenes, la brecha abierta afecto a algunos tanques de carga comenzando el vertido del crudo.

Tras evacuar a la tripulación, y tan sólo con el capitán Castelo y el práctico Sánchez Lebón a bordo, hacia las 13:53, se produjo una explosión, seguida de un pavoroso incendio. Ambos se arrojaron al mar sin poder ser rescatados por las embarcaciones. El práctico llegó a nado a la Cala del Canabal. El cadáver del capitán aparecería quemado y cubierto de petróleo dos días después.

Marea negra

Tras la explosión inicial se produjo un incendio de crudo que arrasó al petrolero durante dos días; afortunadamente, la ligereza de la carga permitió que casi sus tres cuartas partes ardieran en una descomunal hoguera o se evaporaran sin más. En su extinción definitiva tendrían una actuación destacada el CASI de Ferrol y el remolcador de la Armada RA-1.

Una vez estabilizada la situación, el petrolero Camporraso se amarró a boyas a cien metros escasos del casco del petrolero siniestrado y con la intervención del buque de salvamento holandés Smit Lloyd 106, se trasegó unas 7.700 toneladas de crudo que le quedaban a bordo. Esta operación fue criticada por falta de seguridad. Otras 4500 toneladas fueron recogidas a flote o en las playas, pero la carga restante se extendió por las rías de Ferrol, Ares y Betanzos arruinando la pesca durante una temporada; para desgracia de la fauna marina, entre 10.000 y 15.000 toneladas fueron tratadas en la mar con dispersantes y otras 2.000 quedaron pegadas a la costa reforzando el negro de los percebes.

El honor del capitán Castelo

Para el difunto capitán al principio todo fueron elogios: a los siete días de su muerte ya se le había concedido una Cruz del Mérito Naval a título póstumo y a los veinte la Medalla de Oro del Mérito Social Marítimo, pero posteriormente una sentencia de acuerdo con la Ley Penal y Disciplinaria de la Marina Mercante, hace “directamente responsable” del mismo al capitán, al jefe de máquinas y al 1º oficial, y subsidiariamente al 3º oficial y al 1º oficial de máquinas del Urquiola.

En 1979 el Ministerio de Defensa denegó por transcurso de plazo la indemnización solicitada por la viuda de Castelo y esta acudió a tribunales llegando el caso a la Sala Cuarta del Tribunal Supremo, que declaró probado que la muerte de Castelo se había producido a consecuencia de una sucesión de acontecimientos ocasionados por el mal funcionamiento de la Administración. En su Sentencia de 18 de julio de 1983 la Sala puntualizó que ello había acontecido

…sin que en esta serie encadenada de acontecimientos interviniera culpa o negligencia del citado capitán, que cumplió en todo momento con los deberes de su cargo de manera irreprochable y con tal dedicación y heroísmo que perdió su vida por su fidelidad a las tradicionales virtudes de los hombres de la mar y de su profesión de capitán de la Marina Mercante, a la cual honró en conducta ejemplar compartida por el práctico…

La sentencia sentó las bases para que las compañías aseguradoras ejercieran acción de regreso contra el Estado, que hubo de indemnizarlas en virtud de otra Sentencia del Supremo de fecha 6 de marzo de 1985. Posteriormente se erigió un monumento en un lugar de la ciudad de La Coruña, próximo al de la tragedia, dedicado al fallecido capitán Castelo.

El buque tras el accidente

Los restos del Urquiola, tras ser reflotados, fueron trasladados al puerto de Ferrol donde se desguazó la proa y se reutilizó la parte de popa, que tenía la sala de máquinas casi intacta, que fue usada en el buque bulkcarrier Argos botado en 1983.3​ Esta nave pasó en 1988 a la Naviera Vizcaína con el nombre de Urduliz. El 29 de agosto de 1983 el Urduliz tuvo un incidente con el portaaviones nuclear de la armada de EE. UU. Dwight D. Eisenhower en el puerto de Hampton Roads cuando estaba esperando turno para cargar carbón en Norfolk.

En 1984 el Urduliz cambió de armador pasando a E.N. Elcano con el nombre de Castillo de Quermensó y pabellón de Bahamas estando en activo hasta el año 2002 que fue desguazado en Bangladés.

La confusión interesada

Desde el primer momento, las autoridades marítimas causantes de la desgracia se dedicaron a desviar y confundir a la opinión pública. Tres días después del accidente, el ministro de Obras Públicas afirmaba en La Voz de Galicia que el accidente del Urquiola es totalmente ajeno al puerto coruñés. Algo más tarde, el 26 de mayo, ahora en El Ideal Gallego, el contralmirante director del Instituto Hidrográfico de la Marina declaraba: Es improbable la existencia de una piedra desconocida en el canal. Al día siguiente, en el mismo diario, el contralmirante que ejercía de director general de Navegación apostillaba: Yo no creo demasiado en esa aguja misteriosa. Pudo haber acontecido una pequeña explosión interna que originase el boquete.

Con el fin de justificar la decisión de alejar el buque, que fue la verdadera causa de la catástrofe, se mintió y manipuló a una opinión pública inexperta repitiendo una y otra vez que, de otra forma, el buque podría haber explotado en la refinería de La Coruña causando decenas de muertos.

El informe del instructor del caso

Como el código de Justicia Militar aplicable entonces permitía juzgar a un muerto, se abrió consejo de guerra para determinar las responsabilidades del caso. La Armada nombró un juez instructor encargado de la Causa 106/76, instruida con motivo de la varada del petrolero Urquiola en la Bahía de la Coruña. El designado fue el capitán de navío (CN) Isidro Fontenla Roji, quien realizó un trabajo extenso y asombroso: 1052 folios por las dos caras, más 83 folios con el Resumen de los hechos, más un montón de documentos anexos. Las bochornosas conclusiones a que llega el informe, terminado dos años después del accidente, todavía despiertan indignación. Una a una fueron desmentidas por la sentencia del Tribunal Supremo de 18 de julio de 1983.

Isidro Fontenla no estuvo a la altura de las circunstancias. No supo ver que tenía en sus manos el accidente marítimo de la Transición y redactó un informe sesgado y parcial, de puro y duro estilo franquista, que seguramente (¿No había ocurrido siempre así en los cuarenta años de gobierno del general Franco?) él creyó incontestable e indiscutible. También ahí se equivocó. El informe era simplemente patético, hasta el punto de que la Administración ni siquiera lo tuvo en cuenta durante el proceso en el Tribunal Supremo.

Por un lado, el instructor consideró incompetente y errónea la navegación que el buque realizaba al entrar en puerto, así como las reacciones de la dotación ante el accidente. Tirando de diccionario de sinónimos, el informe arremete contra los oficiales y el capitán del buque y concluye que el accidente les produjo (repare el lector en el etcétera final):

Incoherencias, indecisiones, impresiones, titubeos, contradicciones, errores, desconocimientos, equivocaciones, confusiones, precipitaciones, desaciertos, dudas, incertidumbres, nervios, sustos y miedos, etc.

Por el contrario, las actuaciones de la Comandancia de Marina se presupusieron correctas o, más simplemente, ni siquiera se examinaron, como tampoco se tomaron en consideración los hechos que claramente demostraban su responsabilidad. Se ignoraron las denuncias previas al accidente acerca de la existencia de bajos no señalizados en el canal, a pesar de que constaban de forma fehaciente, y, sobre todo, no se analizó si la orden de salir a la mar de inmediato tenía algún sentido, qué se perseguía con ella, qué beneficios hubiera podido acarrear y por qué se adoptó sin oír previamente al capitán del buque. En realidad, se contempló sólo una parte del siniestro, la que tuvo lugar antes de tocar fondo, lo cual dejaba fuera a las autoridades y ponía el foco en el buque, el capitán y la tripulación. Lo demás, cuanto sucedió a partir de ese momento, se ignoró por completo. Algo similar se hizo años después cuando el AEGENA SEA embarrancó frente a la Torre de Hércules y lo mismo hicieron los redactores del informe de la Comisión Permanente de Investigación de Siniestros Marítimos en el naufragio del PRESTIGE.

Unos meses después del accidente del URQUIOLA, el Instituto Hidrográfico de la Marina oficialmente reconoció la existencia en el canal, no de una sino de nueve agujas como la que rajó el casco del Urquiola. Conociendo ese dato, el instructor incluyó en su informe una serie de comentarios bochornosos acerca del concepto de canal y enfilación y sobre el valor de las cartas náuticas.

Para rematar su informe, el instructor recomendó someter al capitán y oficiales del buque a un consejo de guerra:

por infracción de medidas de seguridad, de acuerdo con el artículo 62 de la Ley Penal y Disciplinaria de la Marina Mercante, resultan directamente responsables el capitán del Urquiola, don Francisco Rodriguez Castelo, el Jefe de Máquinas, don Angel Urizar Aramburu y el Primer Oficial de Puente don Eugenio Tesouro Fernandez, así como subsidiariamente el Tercer Oficial de Puente don Miguel Angel Gomez Peña y el Primer Oficial de Máquinas don José Caamaño Dominguez.

No satisfecho con empapelar a tanta gente, el informe proponía también (folios 1120 a 1124) el enjuiciamiento, en aplicación de los artículos 315 y 317 del Código de Justicia Militar y de los artículos 453 y 457, 462 y 463 del Código Penal Común, de diversos periódicos («El Correo Español», «La Gaceta del Norte», la «Hoja del Lunes» de La Coruña), de algunos oficiales del URQUIOLA que habían realizado declaraciones en medios de comunicación comentando sus experiencias, de un profesor de la Escuela de Náutica de La Coruña por la misma razón, (declaraciones la mar de  moderadas y cargadas de razón) y de los firmante del libro URQUIOLA, la verdad de una catástrofe, los tres marinos que dirigían entonces la organización de SLMM. Y ya puestos, afirma sobre la prensa toda que, de sus informaciones, incluso gráficas, se deduce en general una clara tendencia hostil a la administración en sus autoridades. Por ello se estima como conveniente la aplicación de lo dispuesto en el artículo 465 del Código Penal Común reclamando la oportuna satisfacción.

El URQUIOLA entraba perfectamente por el canal del Este o de Seixo Blanco y las agujas no señalizadas se encontraban en pleno canal. El CN Fontenla sabía perfectamente todo esto. Tan sólo su obcecación por no reconocer la culpabilidad de sus compañeros de armas y superiores le llevó a conclusiones tan disparatadas, ridículas y lesivas para los profesionales de la marina mercante.

La sentencia del Tribunal Supremo que selló el caso

Tras el indulto, la viuda del capitán solicitó al Tribunal Supremo una declaración expresa de que su marido había actuado con total profesionalidad, lo que permitió al más alto órgano judicial sentenciar que los hechos  que se dejan probados acreditan que el fallecimiento del Capitán del Urquiola se produjo a consecuencia de una sucesión temporal de acontecimientos que se inició con el primer choque de la quilla de dicho barco ocasionada por el anormal funcionamiento del servicio público de cartografía marina y de información sobre el mar y litoral y culminó con dicho fallecimiento, que pudo haber sido evitado con el funcionamiento normal del servicio público de ordenación, seguridad y salvamento marítimos, sin que en esa serie encadenada de acontecimientos interviniera culpa o negligencia del citado Capitán. (TST de 18 de julio de 1983).

La misma sentencia califica duramente la decisión de la autoridad de marina de alejar el buque después de su primera tocada de fondos, una orden apresurada, incompetente, irrazonable y absurda.

Ello llevó a que, finalmente, el Estado español fuera condenado a indemnizar tanto al armador del buque por la pérdida de éste, como a los propietarios del crudo derramado.

Para entonces, los cargos responsables se habían jubilado y desde luego nadie dentro de la burocracia marítima tomó nota del mal que se había causado, a saber, adoptar una política de alejamiento del riesgo sin análisis ni reflexión ninguna. Veintiséis años después, ante una situación en esencia idéntica, la avería del PRESTIGE, la Administración demostraría que no había aprendido nada de la experiencia del URQUIOLA.

El día que llovió petróleo en A Coruña LA OPINIÓN

 

 

 

 

 

 

 

 

 

 

 

 

 

Primera explosión en el Urquiola frente al puerto de A Coruña. Imagen extraída de http://fotosdelpasado-jm.blogspot.com

 

 

 

 

 

 

 

El petrolero Urquiola recién construido en la ria de Bilbao. Imagen extraída de https://www.grijalvo.com

 

 

 

 

 

 

 

Humareda del Urquiola en A Coruña. Imagen extraída de http://fotosdelpasado-jm.blogspot.com

 

 

 

 

 

 

 

 

 

 

 

El capitán y el practico se arrojan al mar desde una altura de 15 metros, el capitán apareció muerto dos días después y el practico consiguió alcanzar la costa de Mera después de nadar la distancia de 2 kilómetros durante 3 horas.

Se produjo una pavoroso incendio que lleno de una negra humareda los cielos de A Coruña, Betanzos, Ares y Ferrol, arrojando al mar toneladas de crudo que tiñeron de negro nuestras costas por un largo periodo de tiempo.15 toneladas de crudo fueron tratadas con dispersantes y 2.000 toneladas pasaron a formar parte del paisaje costero gallego.

Imagen de la ciudad de La Coruña bajo el humo del Urquiola. Imagen extraída de http://fotosdelpasado-jm.blogspot.com

 

Erupción del Krakatoa

Erupción del Krakatoa 1883

La erupción de 1883 del Krakatoa (indonesio: Letusan Krakatau 1883) en el estrecho de Sunda se produjo del 20 de mayo al 21 de octubre de 1883, alcanzando su punto máximo en las últimas horas de la mañana del 27 de agosto, cuando más del 70% de la isla de Krakatoa y su archipiélago circundante fueron destruidos, se derrumbó en una caldera.

Fotografía durante la erupción de 1883.

Volcán: Krakatoa

Fecha de inicio: 20 de mayo de 1883[1]

Fecha final: 21 de octubre de 1883 (?)[1]

Tipo: Erupción pliniana [2]

Ubicación: Archipiélago de Krakatoa, estrecho de Sunda, Indias Orientales Holandesas (ahora Indonesia) 6.102°S 105.423°E

Impacto: 20 millones de toneladas de azufre liberadas; caída de cinco años de 1,2 °C (2,2 °F)

Fallecidos: 36.417–120.000

 

 

El cambio de geografía tras la erupción

La erupción fue uno de los eventos volcánicos más mortíferos y destructivos de la historia registrada. La explosión se escuchó a 3.110 kilómetros (1.930 millas) de distancia, en Perth, Australia Occidental, y Rodrigues, cerca de Mauricio, a 4.800 kilómetros (3.000 millas) de distancia[3] La onda de presión acústica dio la vuelta al mundo más de tres veces.[4] Al menos 36.417 muertes se atribuyen a la erupción y los tsunamis que creó.

En los días y semanas posteriores a la erupción del volcán se sintieron importantes efectos adicionales en todo el mundo. Se informó de actividad sísmica adicional hasta febrero de 1884, pero cualquier informe posterior a octubre de 1883 fue desestimado por la investigación posterior de Rogier Verbeek sobre la erupción.

Temprana

En los años previos a la erupción de 1883, la actividad sísmica alrededor del volcán Krakatoa fue intensa y los terremotos se sintieron hasta en Australia. A partir del 20 de mayo de 1883, la salida de vapor comenzó a producirse regularmente desde Perboewatan, el más septentrional de los tres conos de la isla. Las erupciones de ceniza alcanzaron una altitud estimada de 6 km (20.000 pies) y se podían escuchar explosiones en Batavia (Yakarta), a 160 km (100 millas) de distancia.[5]

Las erupciones en Krakatoa comenzaron de nuevo alrededor del 16 de junio, con fuertes explosiones y una espesa nube negra que cubrió las islas durante cinco días. El 24 de junio, un viento predominante del este despejó la nube y se pudieron ver dos columnas de ceniza saliendo del Krakatoa. Se cree que el asiento de la erupción fue uno o varios respiraderos nuevos que se formaron entre Perboewatan y Danan. La violencia de las erupciones en curso provocó que las mareas en los alrededores fueran inusualmente altas y los barcos anclados tuvieron que ser amarrados con cadenas. Se sintieron terremotos en Anyer, Banten, y los barcos comenzaron a reportar grandes masas de piedra pómez al oeste, en el Océano Índico.[5]

A principios de agosto, un ingeniero topográfico holandés, el capitán HJG Ferzenaar, investigó las islas Krakatoa.[5] Observó tres columnas de ceniza importantes (las más nuevas de Danan), que oscurecían la parte occidental de la isla, y columnas de vapor de al menos otros once respiraderos, principalmente entre Danan y Rakata. Cuando aterrizó, notó una capa de ceniza de aproximadamente 0,5 m (1 pie 8 pulgadas) de espesor y la destrucción de toda la vegetación, dejando solo tocones de árboles. Desaconsejó cualquier otro aterrizaje.[5]

Fase climática

El 25 de agosto, las erupciones del Krakatoa se intensificaron. Aproximadamente a las 13:00 horas del 26 de agosto, el volcán entró en su fase paroxística. A las 2:00 pm, se podía ver una nube de ceniza negra a 27 km (17 millas) de altura. En ese momento, la erupción era casi continua y se podían escuchar explosiones cada diez minutos. Los barcos dentro de un radio de 20 kilómetros (12 millas) del volcán informaron una fuerte caída de ceniza, con trozos de piedra pómez caliente de hasta 10 cm (4 pulgadas) de diámetro aterrizando en sus cubiertas. Entre las 19:00 y las 20:00 horas, un pequeño tsunami azotó las costas de Java y Sumatra, a 40 km (25 millas) de distancia.

El 27 de agosto se produjeron cuatro enormes explosiones que marcaron el punto culminante de la erupción. A las 5:30 am, la primera explosión se produjo en Perboewatan, lo que provocó un tsunami que se dirigió a Telok Betong, ahora conocido como Bandar Lampung. A las 6:44  am, Krakatoa explotó nuevamente en Danan, y el tsunami resultante se propagó hacia el este y el oeste. La tercera y mayor explosión, a las 10:02 am, fue tan violenta que se escuchó a 3.110 km (1.930 millas) de distancia, en Perth, Australia Occidental, y en la isla de Rodrigues en el Océano Índico, cerca de Mauricio, a 4.800 km (3.000 millas) de distancia, donde se cree que la explosión fue un disparo de cañón desde un barco cercano. La tercera explosión ha sido considerada el sonido más fuerte de la historia.[6] [7] [8]:602  [4]:​​79  Se ha calculado que el volumen de la explosión que se escuchó a 160 km (100 millas) del volcán fue de 180 dB.[9] Cada explosión estuvo acompañada de tsunamis que se estima que alcanzaron más de 30 metros (98 pies) de altura en algunos lugares. Una gran zona del estrecho de Sunda y lugares de la costa de Sumatra se vieron afectados por los flujos piroclásticos del volcán. Se ha estimado que la energía liberada por la explosión equivale a unos 200 megatones de TNT (840 petajulios),[10] aproximadamente cuatro veces más poderosa que la Bomba Zar, el arma termonuclear más poderosa jamás detonada. Esto la convierte en una de las explosiones más poderosas de la historia. A las 10:41  am, un deslizamiento de tierra arrancó la mitad del volcán Rakata, junto con el resto de la isla al norte de Rakata, provocando la explosión final.[6]

Onda de presión

La onda de presión generada por la colosal tercera explosión irradió desde Krakatoa a 1.086 km/h (675 mph). Se estima que la erupción alcanzó los 180 dB, lo suficientemente fuerte como para escucharse a 5.000 kilómetros (3.100 millas) de distancia.[11]:248  Fue tan poderoso que rompió los tímpanos de los marineros en el RMS Norham Castle de Castle Line, que se encontraba frente a Sumatra,[11]:231,234  y provocó un pico de más de 8,5 kilopascales (2,5 inHg), en el manómetro conectado a un gasómetro en la planta de gas de Batavia a 160 km (100 millas) de distancia, sacándolo de la escala.[4]:69  [11] :218  [nota 1]

La onda de presión se registró en barógrafos de todo el mundo. Varios barógrafos registraron la ola siete veces durante cinco días: cuatro veces con la ola alejándose del volcán hasta su antípoda y tres veces viajando de regreso al volcán.[4]:63  Por lo tanto, la onda dio la vuelta al mundo tres veces y media. Ash fue impulsada a una altura estimada de 80 km (50 millas).

Las erupciones disminuyeron rápidamente a partir de ese momento y el Krakatoa quedó en silencio en la mañana del 28 de agosto. Pequeñas erupciones, en su mayoría de lodo, continuaron hasta octubre de 1883. Para entonces, quedaba menos del 30% de la isla original.

Efectos

La combinación de flujos piroclásticos, cenizas volcánicas y tsunamis asociados con las erupciones del Krakatoa tuvo consecuencias regionales desastrosas. Algunas tierras en Banten, aproximadamente a 80 km al sur, nunca fueron repobladas; volvió a ser jungla y ahora es el Parque Nacional Ujung Kulon. El número oficial de muertos registrado por las autoridades holandesas fue de 36.417.[12]

“Las cenizas ardientes de Ketimbang”

Verbeek y otros creen que la última gran erupción del Krakatoa fue una explosión lateral u oleada piroclástica. Alrededor del mediodía del 27 de agosto de 1883, una lluvia de ceniza caliente cayó alrededor de Ketimbang (ahora Katibung en la provincia de Lampung), en Sumatra. Aproximadamente 1.000 personas fueron asesinadas en Sumatra;[11] No hubo supervivientes de las 3.000 personas en la isla de Sebesi. Hay numerosos informes de grupos de esqueletos humanos flotando a través del Océano Índico en balsas de piedra pómez volcánica y apareciendo en la costa este de África hasta un año después de la erupción.[11]:297–298 

Tsunamis y efectos lejanos

Barcos de lugares tan lejanos como Sudáfrica se sacudieron cuando los tsunamis los azotaron, y los cuerpos de las víctimas fueron encontrados flotando en el océano durante meses después del evento. [dudosodiscutir] Se creía que los tsunamis que acompañaron a la erupción fueron causados ​​por gigantescos flujos piroclásticos que ingresaban al mar; Cada una de las cuatro grandes explosiones estuvo acompañada de grandes flujos piroclásticos resultantes del colapso gravitacional de las columnas eruptivas.[cita necesaria] Esto provocó que varios kilómetros cúbicos de material ingresaran al mar, desplazando un volumen igual de agua de mar. La ciudad de Merak fue destruida por un tsunami de 46 metros de altura. Algunos de los flujos piroclásticos llegaron a la costa de Sumatra a una distancia de hasta 40 km (25 millas), habiéndose movido a través del agua sobre un colchón de vapor sobrecalentado.[nota 2] También hay indicios de flujos piroclásticos submarinos que alcanzan los 15 km (9,3 millas) del volcán.[13]

Se registraron olas más pequeñas en mareógrafos hasta en el Canal de la Mancha.[14] Estos ocurrieron demasiado pronto para ser restos de los tsunamis iniciales y pueden haber sido causados ​​por ondas de aire conmovedoras de la erupción. Estas ondas de aire dieron varias vueltas alrededor del mundo y cinco días después todavía eran detectables en los barógrafos.[15]

Efectos geográficos

Evolución de las islas alrededor del Krakatoa

Tras la erupción, se descubrió que el Krakatoa había desaparecido casi por completo, excepto el tercio sur. Gran parte del cono Rakata se había cortado, dejando tras de sí un acantilado de 250 metros (820 pies). De los dos tercios septentrionales de la isla, sólo quedó un islote rocoso llamado Bootsmansrots (‘ Roca de Bosun’), un fragmento de Danan; Poolsche Hoed había desaparecido.

La enorme cantidad de material que depositó el volcán alteró drásticamente el fondo del océano. Se estima que se depositaron entre 18 y 21 km3 (4,3 a 5,0 millas cúbicas) de ignimbrita en 1.100.000 km2 (420.000 millas cuadradas), llenando en gran medida la cuenca de 30 a 40 m (98 a 131 pies) de profundidad alrededor de la cuenca. Las masas de tierra de las islas Verlaten y Lang aumentaron, al igual que la parte occidental del remanente de Rakata. Gran parte de este material ganado se erosionó rápidamente, pero las cenizas volcánicas siguen siendo una parte importante de la composición geológica de estas islas. La cuenca tenía 100 m (330 pies) de profundidad antes de la erupción y 200 a 300 m (660 a 980 pies) después.

Dos bancos de arena cercanos (llamados Steers y Calmeyer en honor a los dos oficiales navales que los investigaron) se convirtieron en islas por la caída de ceniza, pero luego el mar las arrasó. El agua de mar de los depósitos volcánicos calientes de Steers y Calmeyer provocó una subida de vapor, lo que algunos confundieron con una erupción continua.

Clima global

La erupción provocó un invierno volcánico.[17] En el año siguiente a la erupción, las temperaturas medias de verano en el hemisferio norte cayeron 0,4 °C (0,72 °F).[18] Las precipitaciones récord que azotaron el sur de California durante el año hidrológico comprendido entre julio de 1883 y junio de 1884 (Los Ángeles recibieron 970 milímetros (38,18 pulgadas) y San Diego 660 milímetros (25,97 pulgadas)[19] se han atribuido a la erupción del Krakatoa.[20] No hubo El Niño durante ese período, como es habitual cuando ocurren fuertes lluvias en el sur de California,[21] pero muchos científicos dudan de que haya una relación causal.[22] [verificación fallida]

La erupción inyectó una enorme cantidad de gas dióxido de azufre (SO2) en lo alto de la estratosfera, que posteriormente fue transportado por vientos de alto nivel por todo el planeta. Esto condujo a un aumento global de la concentración de ácido sulfúrico (H2 SO4) en los cirros de alto nivel. El aumento resultante en la reflectividad de las nubes (o albedo) reflejó más luz entrante del sol de lo habitual y enfrió todo el planeta hasta que el azufre cayó al suelo en forma de precipitación ácida.[23]

Efectos ópticos globales

Pinturas de 1888 que muestran los efectos ópticos de la erupción en el cielo a lo largo del tiempo.

La erupción del Krakatoa de 1883 oscureció el cielo en todo el mundo durante años y produjo espectaculares puestas de sol en todo el mundo durante muchos meses. El artista británico William Ascroft hizo miles de bocetos en color de los atardeceres rojos al otro lado del mundo desde Krakatoa en los años posteriores a la erupción. La ceniza provocó “atardeceres rojos tan vívidos que se llamó a los camiones de bomberos en Nueva York, Poughkeepsie y New Haven para apagar la aparente conflagración”.[24] Esta erupción también produjo un Anillo del Obispo alrededor del sol durante el día y una luz volcánica de color púrpura durante el crepúsculo. En 2004, un astrónomo propuso la idea de que el cielo rojo que se muestra en la pintura de Edvard Munch de 1893 El grito es una representación precisa del cielo sobre Noruega después de la erupción.[25]

Los observadores meteorológicos de la época rastrearon y mapearon los efectos en el cielo. Llamaron al fenómeno “corriente de humo ecuatorial”.[26] Esta fue la primera identificación de lo que hoy se conoce como corriente en chorro.[27] Durante varios años después de la erupción, se informó que la luna parecía ser azul y, a veces, verde. Esto se debía a que algunas nubes de ceniza estaban llenas de partículas de aproximadamente 1 μm de ancho, el tamaño adecuado para dispersar fuertemente la luz roja y permitir el paso de otros colores. Los blancos rayos de luna que brillaban a través de las nubes emergían azules y, a veces, verdes. La gente también vio soles color lavanda y, por primera vez, registró nubes noctilucentes.[24]

Número de muertos

El número oficial de muertos fue de 36.417,[12] aunque otra estimación lo sitúa en 120.000.[28]

Cifra oficial de muertos [12]
Ubicación Fallecidos
Bantén 21.565
Lampung 12.466
Jacarta 2.350
Bengkulu 34
Java Occidental 2
Total 36.417

Posibles Causas

El destino del norte del Krakatoa ha sido objeto de cierta disputa entre los geólogos. Inicialmente se propuso que la isla había sido destruida por la fuerza de la erupción. La mayor parte del material depositado por el volcán es de origen magmático y la caldera formada por la erupción no está llena en gran medida con depósitos de la erupción de 1883. Esto indica que la isla se hundió en una cámara de magma vacía al final de la secuencia de erupción en lugar de haber sido destruida durante las erupciones.

Basándose en los hallazgos de investigadores contemporáneos, las hipótesis establecidas parten de que parte de la isla se hundió antes de las primeras explosiones en la mañana del 27 de agosto. Esto obligó a que las chimeneas del volcán quedaran por debajo del nivel del mar, provocando:

  • grandes inundaciones que crearon una serie de explosiones freáticas (interacción entre agua subterránea y magma).
  • agua de mar para enfriar el magma lo suficiente como para que se formara una costra y produjera un efecto de “olla a presión” que se aliviaba sólo cuando se alcanzaban presiones explosivas.

La evidencia geológica no respalda la suposición de que la causa fue únicamente el hundimiento antes de la explosión. Por ejemplo, los depósitos de piedra pómez e ignimbrita no son de un tipo consistente con una interacción magma-agua de mar. Estos hallazgos han llevado a otras hipótesis:

  • una caída de la tierra bajo el agua o un hundimiento parcial expuso repentinamente la cámara de magma altamente presurizada, abriendo un camino para que el agua de mar ingrese a la cámara de magma y preparando el escenario para una interacción magma-agua de mar.
  • Las explosiones finales pueden haber sido causadas por la mezcla de magma: una infusión repentina de magma basáltico caliente en el magma más frío y ligero de la cámara debajo del volcán. Esto habría resultado en un aumento rápido e insostenible de la presión, provocando una explosión catastrófica. La prueba de esta teoría es la existencia de piedra pómez compuesta de material claro y oscuro, siendo el material oscuro de origen mucho más caliente. Según se informa, dicho material constituye menos del cinco por ciento del contenido de la ignimbrita Krakatoa, y algunos investigadores han rechazado que esto sea la causa principal de las explosiones del 27 de agosto.

Duración: 36 segundos.0:36 Modelo numérico de explosión hidrovolcánica del Krakatoa y generación de Tsunami.

Mader & Gittings describieron en 2006 un modelo numérico para una explosión hidrovolcánica del Krakatoa y el tsunami resultante.[29] Se forma una alta pared de agua que inicialmente mide más de 100 metros impulsada por el agua, el basalto y el aire impactados.

Investigación verbeek

Aunque la fase violenta de la erupción de 1883 terminó a última hora de la tarde del 27 de agosto, después de que volvió la luz el 29 de agosto, durante meses continuaron los informes de que el Krakatoa todavía estaba en erupción. Las primeras tareas del comité de Verbeek fueron determinar si esto era cierto y verificar los informes de otros volcanes en erupción en Java y Sumatra. En general, se descubrió que eran falsas. Verbeek descartó cualquier afirmación de que el Krakatoa siga en erupción después de mediados de octubre debido al vapor de material caliente, deslizamientos de tierra debido a las fuertes lluvias monzónicas de esa temporada y “alucinaciones debidas a la actividad eléctrica” ​​vistas desde la distancia.[30]

No se observaron signos de mayor actividad hasta 1913, cuando se informó de una erupción. Una investigación no pudo encontrar evidencia de que el volcán estuviera despertando. Se determinó que lo que se había confundido con una actividad renovada había sido un deslizamiento de tierra importante (posiblemente el que formó el segundo arco hacia el acantilado de Rakata).

Los exámenes posteriores a 1930 de cartas batimétricas realizadas en 1919 muestran evidencia de un abultamiento indicativo de magma cerca de la superficie en el sitio que se convirtió en Anak Krakatau.

En la cultura popular

El Grito.

  • Se ha teorizado que la explosión fue una fuente de inspiración para la pintura de Edvard Munch de 1893, El grito. El cielo rojizo del fondo es la memoria del artista de los efectos de la poderosa erupción volcánica del Krakatoa, que tiñó profundamente de rojo los cielos del atardecer en partes del hemisferio occidental durante meses durante 1883 y 1884, aproximadamente una década antes de que Munch pintara El grito.[31]

Fue la primera erupción volcánica que se convirtió en noticia en todo el mundo.

El telégrafo hizo posible que gente de diferentes rincones del mundo se enterara de que un volcán había hecho desaparecer una isla en Indonesia y esto despertó mucho interés.

Cómo la erupción del volcán de Krakatoa en 1883 afectó los vuelos en avión

Una de las erupciones más grande de los últimos 250 años ayudó a descubrir las corrientes de aire que hoy hacen posible que los aviones vuelen.

Antes de que el volcán indonesio Krakatoa entrara en erupción en 1883, nadie sabía que a miles de metros por encima de nuestras cabezas, existían corrientes de aire que años después harían posible que aprendiéramos a volar mejor.

¿Qué tuvo de especial esta erupción para llevar a un descubrimiento científico?

Para empezar, hubo dos factores que la hicieron especial, según explicó Jenni Barclay, profesora de Vulcanología de la Universidad de East Anglia, en Reino Unido, al programa de radio la BBC The Genius of Accidents.

“La erupción del Krakatoa soltó que una enorme cantidad de magma a la superficie en un periodo de tiempo muy corto de tiempo”, dijo la experta.

“Y la otra cosa que la hizo particularmente explosiva fue que el agua se metió en su sistema y una vez que esto pasa, se convierte en vapor y la inmensa cantidad de energía extra que esto crea provoca que todo el sistema estalle”.

El resultado fue que el volcán concentró tanta energía que expulsó su carga por todo lo alto.

“Parte del material, sobre todo las partículas más finas, subieron muy alto, a unos 40 kilómetros“, afirmó.

Para monitorear el fenómeno, la Real Sociedad de Londres para el Avance de la Ciencia Natural decidió por primera vez involucrar al público en su actividad y publicó anuncios pidiendo a los ciudadanos que enviaran sus descripciones de los cambios que habían visto en el cielo que pudieran estar relacionados con la erupción del Krakatoa.

Las cartas y dibujos llegaron desde lugares tan distantes que los expertos se dieron cuenta de que algo estaba llevando las cenizas del Krakatoa a lugares muy lejanos.

La erupción había sucedido el 27 de agosto y en cuestión de un día sus cenizas ya habían sido vistas a miles de kilómetros de distancia, lo que significaba que el viento se movía a gran velocidad.

La red de observadores que la Real Sociedad de Londres había improvisado le permitió rastrear lo que hoy se conoce como corrientes en chorro.

El meteorólogo Chris Bell explicó que las corrientes en chorro son corrientes de aire muy rápidas que fluyen por el medio de la atmósfera.

Los aviones aprovechan las corrientes de aire para moverse más rápido.

“Las corrientes en chorro recorren el hemisferio norte de oeste a este porque la forma en que la Tierra gira sobre su eje hace que los vientos se muevan en esa dirección. Pueden fluir muy rápidamente, su velocidad promedio va de los 160 a 240 kilómetros por hora, pero las más fuertes pueden registrar vientos a más de 320 kilómetros por hora”, afirmó Bell.

El conocimiento de las corrientes en chorro ayuda a predecir el tiempo. Pero, ¿qué tiene que ver todo esto con que hoy podamos volar?

Los aviones aprovechan estas corrientes en chorro para ahorrar combustible e ir a mayor velocidad, es por eso que el viaje de Nueva York a Londres suele durar de una a dos horas menos que el trayecto inverso. O menos: en 2015, por ejemplo, una aeronave de British Airways consiguió hacer este recorrido en cinco horas y 16 minutos, una hora y media antes de lo anunciado.

A la vez, los pilotos deben tener cuidado de no encontrarse con una corriente que vaya en dirección contraria, ya que esto puede provocar accidentes.

Krakatoa Hoy

A finales de 1927, Krakatoa se despertó, produciendo vapor y escombros. A principios de 1928, el borde de un nuevo cono apareció sobre el nivel del mar, y se convirtió en una pequeña isla en un año.

Llamada Anak Krakatoa, la isla ha seguido creciendo hasta una elevación de unos 2.667 pies, y ha hecho erupción levemente a veces.