Este Mundo, a veces insólito

Calendario
abril 2024
L M X J V S D
1234567
891011121314
15161718192021
22232425262728
2930  

Pamela

4.1/5 - (7 votos)

El telescopio espacial PAMELA (Payload for AntiMatter Exploration and Light-nuclei Astrophysics) es un observatorio en órbita destinado a determinar características de la materia negra.

Pamela ha sido lanzada el 15 de junio de 2006 por un cohete ruso a bordo de un satélite Resurs DK1, desde Italia.

Los investigadores a la búsqueda de antimateria en el universo acuden a detectores embarcados a borde de maquinas espaciales, tales como PAMELA o AMS (módulo para el ISS, estación espacial internacional).pamela1

PAMELA será el detector más complejo de partículas lanzado en el espacio ya que podrá detectar y medir con una precisión excepcional la carga, la masa y el espectro de energía de las partículas cósmicas que chocarán su detector.

El objetivo es estudiar las partículas cósmicas, sus espectros, su origen, la presencia de antipartículas, y la posible presencia de materia negra.

La misión PAMELA provocó un gran revuelo en 2008 después de que encontrase un número significativamente mayor de lo esperado de positrones (anti-electrones) en energías entre 10-100 GeV. Teniendo en cuenta que sólo se producen positrones cuando interactúan los protones con el medio interestelar, los físicos han calculado que a energías más altas debería haber una caída gradual en el número de positrones que alcanzan la Tierra. Sin embargo, las colisiones de materia oscura se espera que produzcan un igual número de electrones y positrones en un rango de energía dado. Esto aumentaría la proporción de positrones a electrones detectados, debido a que los positrones son sustancialmente menos abundantes que los electrones en el universo.

¿Fermi ha observado materia oscura?

Artículo publicado por Edwin Cartlidge el 20 de mayo de 2011 en physicsworld.com

Nuevos resultados del Telescopio Espacial de Rayos Gamma Fermi de la NASA parecen confirmar una tasa mayor de lo esperado de positrones de alta energía que alcanzan la Tierra desde el espacio exterior. Esta anomalía en el flujo de rayos cósmicos se observó por primera vez por la nave italiana PAMELA en 2008 y sugiere la existencia de partículas de materia oscura en aniquilación.

Los físicos creen que aproximadamente el 80% de la masa del universo está en forma de una misteriosa sustancia conocida como materia oscura. Incapaces de observar la materia oscura usando luz u otras formas de radiación electromagnética, los investigadores están intentando encontrar pruebas directas de la misma en la Tierra usando detectores subterráneos con grandes escudos o aceleradores de partículas. Pero también tienen una tercera opción menos directa – usar instrumentos en satélites o globos para detectar las partículas que algunas teorías predicen que se crean en el espacio cuando colisionan dos partículas de materia oscura y se aniquilan.

La misión PAMELA provocó un gran revuelo en 2008 después de que encontrase un número significativamente mayor de lo esperado de positrones (anti-electrones) en energías entre 10-100 GeV. Teniendo en cuenta que sólo se producen positrones cuando interactúan los protones con el medio interestelar, los físicos han calculado que a energías más altas debería haber una caída gradual en el número de positrones que alcanzan la Tierra. Sin embargo, las colisiones de materia oscura se espera que produzcan un igual número de electrones y positrones en un rango de energía dado. Esto aumentaría la proporción de positrones a electrones detectados, debido a que los positrones son sustancialmente menos abundantes que los electrones en el universo.

¿Positrones o protones?

Los resultados de PAMELA, no obstante, no eran definitivos, principalmente debido a la posibilidad de que la misión estuviese confundiendo positrones con el número mucho mayor de protones que alcanza sus detectores. Pero los últimos resultados de Fermi parecen eliminar estas dudas. Aunque es un telescopio de rayos gamma, Fermi funciona de hecho detectando pares de electrón-positrón y por esto también está perfectamente capacitado para estudiar los rayos cósmicos. Al contrario que PAMELA no incluye un imán para distinguir entre electrones y positrones, pero los científicos de Fermi se dieron cuenta de que podrían usar en su lugar en campo magnético de la Tierra. Éste curva los electrones y positrones de tal forma que ciertas zonas del cielo contendrán justo un tipo de partícula, pero no de la otra. Por lo que estudiando las señales procedentes de estas regiones, los investigadores fueron capaces de medir separadamente los flujos de electrones y positrones, y por tanto, calcular la fracción provocada sólo por los últimos.

Los resultados de este análisis se presentaron en una conferencia en Roma la semana pasada por parte del miembro colaborador de Fermi Warit Mitthumsiri. El colega de Mitthumsiri, Stefan Funk del Laboratorio del Acelerador Nacional SLAC en California, cree que los resultados constituyen “una confirmación muy buena”, de las observaciones de hace tres años, y mantiene que el ruido de fondo se ha tenido en cuenta adecuadamente. “Habrá una pequeña fracción de protones que tendrán el aspecto de electrones”, dice, “pero somos bastante optimistas respecto a que hayamos sustraído esa porción correctamente”.

El investigador principal de PAMELA, Piergiorgio Picozza de la Universidad de Roma Tor Vergata, está de acuerdo. Dice que, salvo alguna fuente desconocida de protones, los resultados de Fermi “apoyan sólidamente el exceso de positrones a una energía mayor”, añadiendo que el acuerdo es el más convincente debido a que los dos conjuntos de datos fueron derivados usando “distintos análisis, distintos detectores, y condiciones experimentales completamente distintas”.

Nuevos resultados de PAMELA sobre el exceso de positrones en los rayos cósmicos

Francisco R. Villatoro 3 ago 2013

El experimento PAMELA, instalado en un satélite, ha medido el flujo de positrones en los rayos cósmicos con energía de hasta 300 GeV. Durante el mínimo del último ciclo solar entre julio de 2006 y diciembre de 2009 se han observado 24.500 positrones, muchos más de los esperados. Este exceso apunta a una fuente astrofísica (quizás galáctica) que aún se desconoce. ¿Será la materia oscura? Por ahora nadie lo sabe, pero todopamela2 apunta a otra fuente exótica. El exceso también ha sido observado por AMS-02, en la Estación Espacial Internacional, cuyos datos tienen menor error pero casi coinciden con los nuevos datos publicados por PAMELA. ¿Qué será esa fuente exótica de positrones? Quizás habrá que esperar al telescopio espacial James Webb para descubrir la fuente galáctica de tipo astrofísico responsable de este exceso de positrones. El nuevo artículo técnico es PAMELA Collaboration, “The cosmic-ray positron energy spectrum measured by PAMELA,” arXiv:1308.0133, Subm. 1 Aug 2013.

PAMELA (a Payload for Antimatter Matter Exploration and Lightnuclei Astrophysics) ha medido la fracción entre el flujo de positrones, y el flujo de electrones y positrones, φ(e+) / (φ(e+)+φ(e−)), con energía entre 1,5 y 100 GeV, en los rayos cósmicos que inciden en la tierra. En 2008 ya se publicó la existencia del exceso en los datos de PAMELA [ver aquí y aquí también], que AMS-02 ha confirmado este mismo año [ver aquí y aquí también]. Como muestra esta figura, a comparar los resultados de PAMELA con los de AMS-02 se observa que a baja energía (por debajo de 5 GeV) los resultados de PAMELA son un poco mayores que los AMS-02 (y ambos más bajos que los de otros experimentos, salvo Aesop). La razón es la dinámica del ciclo solar que modula el flujo de partículas de carga positiva en los rayos cósmicos (de origen solar, porque como ya sabrás los rayos cósmicos no tienen por qué tener un origen cosmológico). PAMELA ha tomado datos entre 2006 y 2009, cuando AMS-02 los ha tomado entre 2011 y 2013 (y otros experimentos en otros momentos del ciclo solar).

El gran problema con este exceso de positrones es que no viene acompañado de un exceso de protones. Por ello, si el origen de este exceso es la materia oscura, debe ser muy exótica, como neutrinos de muy alta masa que se desintegran con preferencia en leptones (lo que requiere un ajuste fino en los modelos supersimétricos, en contra de la “naturalidad” de la SUSY). Lo más razonable es que su fuente sea astrofísica; positrones originados en púlsares distribuidos en el halo galáctico que son acelerados por los campos magnéticpamela3os de la galaxia [ver aquí, aquí y aquí también]. El problema es que estas fuentes astrofísicas no han sido observadas aún (aunque su existencia no contradice los resultados de los modelos de simulación galáctica). Los próximos años serán muy apasionantes en este campo.

Las partículas normalmente son protones, electrones y núcleos de helio que cuando colisionan con los núcleos de la atmósfera superior de la Tierra pueden producir lluvias de partículas hijas. Estas lluvias pueden ser tan extensas que se observan fácilmente desde tierra.

Cinturones de Van Allen © by Kanijoman

Los astrónomos se dieron cuenta hace tiempo de que estas colisiones deben producir antiprotones, de la misma forma que sucede en los aceleradores de la Tierra. Pero esto genera una interesante pregunta:¿Qué pasa con los antiprotones una vez que se han creado?

Claramente, muchas de estas antipartículas deben aniquilarse cuando se encuentran con partículas de materia común. Pero algunos astrónomos siempre han sospechado que los antiprotones restantes deben quedar atrapados por el campo magnético de la Tierra, formando un cinturón de radiación de antiprotones.

Ahora, los astrofísicos dicen que han descubierto finalmente este cinturón de antiprotones propuesto hace tiempo.

En 2006, estos chicos lanzaron una nave espacial llamada PAMELA a la órbita baja de la Tierra, específicamente para buscar antiprotones en los rayos cósmicos.

Pero como la mayor parte de naves en la órbita baja de la Tierra, PAMELA debe pasar a diario a través de la Anomalía del Atlántico Sur, una región donde los Cinturones de Radiación de Van Allen se acercan a la superficie de la Tierra. Aquí es donde las partículas energéticas tienden a quedar atrapadas. Por tanto, si algunos antiprotones quedaran capturados en esa mezcla, aquí es donde PAMELA debería encontrarlos.pamela4

Ahora el equipo de PAMELA ha analizado los 850 días de datos, buscando sólo en los momentos en los que la nave estaba en la Anomalía del Atlántico Sur (aproximadamente un 1,7 por ciento de este tiempo).

Quién lo iba a decir, estos chicos encontraron 28 antiprotones. Eso es aproximadamente tres órdenes de magnitud más de lo que se esperaría encontrar en el viento solar, demostrando que las partículas realmente están atrapadas y almacenadas en este cinturón.

Esto constituye “la fuente más abundante de antiprotones cerca de la Tierra”, dice el equipo de PAMELA.

La Anomalía del Atlántico Sur es bien conocida por ser un completo engorro. Debido a las partículas de alta energía que se acumulan ahí, el Telescopio Espacial Hubble debe desconectarse cuando pasa a través de la misma varias veces al día; y la Estación Espacial Internacional tiene un refuerzo extra para proteger a los astronautas de sus efectos.

El descubrimiento de un cinturón adicional de antiprotones no tendrá mucho impacto en el peligro que representa – el número de antiprotones es minúsculo en comparación con los electrones y protones ahí atrapados.

Pero siempre es interesante que las predicciones teóricas se confirmen. Esto es buena ciencia en funcionamiento.

Deja una respuesta

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.