Este Mundo, a veces insólito

Calendario
octubre 2016
L M X J V S D
 12
3456789
10111213141516
17181920212223
24252627282930
31  

Archivo diario: 31 octubre, 2016

Kepler

Kepler es el nombre de un satélite artificial que orbita alrededor del Sol buscando planetas extrasolares, especialmente aquellos de tamaño similar a la Tierra que se encuentren en la zona de habitabilidad de su estrella (véase análogo a la Tierra), llevando a cabo lo que se conoce como misión Kepler. Fue lanzado por la NASA desde Cabo Cañaveral en la madrugada del 6 de marzo de 2009, en un cohete modelo Delta II.

El nombre de este satélite es un epónimo en dedicatoria al astrónomo y matemático Johannes Kepler (1571-1630), descubridor de las tres leyes de Kepler que describen las características de las órbitas planetarias. Los descubrimientos de Kepler sólo pudieron ser posibles gracias a la exhaustiva labor de recopilación de datos de Tycho Brahe (1546-1601), labor que pretende emular de forma automática el satélite.kepler1

Kepler es parte del programa Discovery de la NASA; un programa de un costo relativamente bajo, enfocado en misiones científicas específicas. La construcción del telescopio y su puesta en marcha fue gestionada por el Jet Propulsion Laboratory de la NASA, siendo Ball Aerospace responsable del desarrollo del sistema de vuelo, y el Centro de Investigación Ames el responsable tanto del desarrollo del sistema de tierra, como de las operaciones desde diciembre de 2009 y del análisis de los datos científicos

La duración prevista fue de 3,5 años. Se esperaba que a la finalización de su misión, inicialmente a finales de 2012 y ampliada posteriormente a 2016, este satélite permitiese descubrir varios planetas de tamaño similar a la Tierra, orbitando su estrella a una distancia comparable a la de nuestro planeta. Antes de esta fecha, la sonda podría no obstante identificar planetas más grandes o que orbitasen más cerca de su estrella.1 Sin embargo la existencia de más ruido del esperado hizo necesario más tiempo para cumplir todos los objetivos de la misión. Por ello en 2012 la misión se prolongó hasta el 30 de septiembre de 2016.2 Desgraciadamente la sonda se estropeó al año siguiente. Para el buen funcionamiento del equipo es necesario que al menos tres de los cuatro giróscopos utilizados para orientar la nave se mantengan en buen estado,3 sin embargo el 15 de mayo del 2013 falló el segundo de ellos.4 Durante los meses siguientes se intentó recuperar al menos uno de los dos giróscopos dañados, pero finalmente el 15 de agosto la NASA informó de que cesaban los esfuerzos de reparación y que se estaban considerando nuevas misiones posibles en las condiciones actuales del telescopio.5

Mientras estuvo operativa, la sonda Kepler encontró un total de 2740 candidatos a exoplanetas, y se han confirmado 114 planetas en 69 sistemas estelares. En enero de 2013, los astrónomos del Centro Harvard-Smithsonian para Astrofísica (Ckepler2fA) utilizaron datos de Kepler para estimar que “por lo menos 17 mil millones” de exoplanetas del tamaño de la Tierra residen en la Vía Láctea.6

La sonda espacial tiene unas dimensiones de 4,7 m de alto por 2,7 m de diámetro, y pesa 1039 kg, sin contar con algo más de 10 kg de hidrazina usada como propelente.7 El telescopio, montado sobre una estructura hexagonal de aluminio, cuenta con 10 m2 de paneles fotovoltaicos que generan 1 kW de energía eléctrica para la nave. La duración estimada de la misión es de 3 años y medio, con una posible extensión a 6 años.7 El coste de la operación ha sido estimado en 600 millones de dólares8 y en ella trabajan 200 científicos.9

La sonda ha sido construida por las empresas LAST y Ball Aerospace & Technologies Corp., que también serán las encargadas de controlar la nave desde el centro de investigación de la universidad de Colorado (Estados Unidos). La nave está preparada para analizar parcialmente la información del sensor, recolectada cada 30 segundos, para enviar únicamente la información relevante a la estación de procesamiento en la Tierra: de otra manera, no habría ancho de banda suficiente para transmitir toda la información recabada. En el análisis de los datos trabaja un equipo de 28 personas, ayudados por observaciones externas realizadas por los telescopios Hubble y Spitzer.10

El lanzamiento del satélite fue pospuesto en dos ocasiones por recortes de presupuesto. Durante el proceso, se sustituyó el sistema giratorio de la antena direccional por otro fijado a la estructura, más económico. Como consecuencia de ello, el satélite perderá el equivalente a un día de exploración al mes.

Aunque la sonda Kepler es un satélite (pues orbita en torno a un objeto), no es un satélite de la Tierra, sino que orbita en torno al sol, en una órbita elíptica de 372 días, y a una distancia de éste similar a la de la tierra. Con esta órbita se consigue facilitar la transmisión de datos desde la sonda hasta la Tierra, pero evitando los deslumbramientos que diversos cuerpos celestes podrían producir sobre la lente. La sonda cuenta además con ocho propulsores que le permitirán maniobrar para cambiar de orientación cuando sea necesario.1kepler3

Según la NASA, “La misión Kepler es la primera en el mundo con la capacidad de detectar realmente planetas análogos a la Tierra orbitando estrellas similares a nuestro sol en una zona habitable“.1

El objetivo de la sonda es observar simultáneamente unas 150 000 estrellas,10 y analizar su brillo cada 30 minutos para detectar posibles tránsitos de planetas. Para ello utilizará un sensible fotómetro tipo Schmidt de 0.95 m de apertura8 y un espejo primario de 1,4 metros. Su cámara CCD ofrece una resolución de 95 millones de píxeles; la más potente lanzada al espacio hasta la fecha.9 1

Mediante esta nave se espera ampliar notablemente el número de planetas extrasolares descubiertos (que a la fecha del lanzamiento era de 337),8 de tal manera que al término de la misión, se pueda disponer de una estimación más fiable sobre el número de planetas existentes de la galaxia. Este dato es crucial para responder a la pregunta de si estamos solos en el universo.1

La misión Kepler constituye la versión norteamericana de la misión europea Corot, que lanzó otro satélite similar, aunque menos potente, a finales de diciembre de 2006. La principal diferencia entre ambas misiones es que, gracias a la mayor resolución de los instrumentos de la Kepler, se podrán descubrir planetas más pequeños, de tamaño similar a la Tierra.

El Catálogo de entrada Kepler o Kepler Input Catalog (KIC) es una base de datos de búsqueda pública de los aproximadamente 13,2 millones objetivos en estudio por la Misión Kepler.11 12

El primer éxito de la sonda espacial Kepler consistió en obtener detalles sobre la atmósfera de un júpiter caliente ( un planeta gaseoso como Júpiter pero más cercano al sol, y por tanto más caliente). Se trata del planeta HAT-P-7b, que orbita alrededor de la estrella HAT-P-7, en la constelación de Cisne, a 1000 años luz de distancia, y que tiene una temperatura de aproximadamente 2 377 °C. El planeta HAT-P-7b ya se conocía antes de que el telescopio Kepler dirigiera su atención hacia él, sin embargo, las mediciones efectuadas por la sonda han mostrado una pequeña elevación y disminución de la luz causada por las fases cambiantes del planeta, parecidas a las de la Luna. A pesar de que se trata de la medición de mayor precisión jamás obtenida para esta estrella, Kepler será aún más preciso después de que finalice el desarrollo del software para el análisis de datos de la misión.

Con fecha 4 de enero de 2010, los científicos que controlan la Kepler anunciaron haber descubierto 5 nuevos planetas extrasolares: cuatro del tipo Júpiter caliente, y uno del tamaño aproximado de Neptuno.14 Debido al sistema de detección empleado, que requiere de sucesivos tránsitos, será necesario esperar a la finalización de la misión para obtener descubrimientos relevantes, pero aun así, en equipo que trabaja con la Kepler anunció otros cien candidatos potenciales a la espera de verificacíón.14 Esta cifra aumentó a 706 en junio de 2010, de los cuales unos 400 eran candidatos prometedores.10 En una conferencia de ese mismo mes, nota 1 Dimitar Sasselov, investigador del proyecto, anunció que al menos 60 de los planetas detectados hasta la fecha tendrán un tamaño similar al terrestre (el doble de tamaño, o menos).16kepler4

En diciembre de 2011, la NASA anunció que el número de candidatos detectados hasta la fecha ascendía a 2326. De ellos, 207 tendrían un tamaño similar a la Tierra, aunque sólo uno (Kepler-22b) estaba confirmado.17

En enero de 2012, científicos de la NASA anunciaron que el satélite Kepler había encontrado tres planetas diminutos que no habían sido detectados hasta entonces, orbitando alrededor de una estrella. Los planetas fueron denominados KOI-961 y se constató que el más pequeño de ellos poseía el tamaño de Marte. John Johnson, líder del equipo de investigación del Instituto de Ciencia Exoplanetaria de la NASA, comentó que se trataba del sistema solar más pequeño que se había encontrado hasta el momento.

El 24 de julio de 2015 los científicos de la NASA presentan a Kepler-452b, un planeta de tamaño similar a la Tierra orbitando en la zona habitable de una estrella Kepler-452 parecida al Sol.

En octubre de 2015 se presentaron los datos de la estrella KIC 8462852 que presentaba unos tránsitos que duraban casi una semana, cuando habitualmente los tránsitos suelen durar uno o dos días. Los científicos no tienen una respuesta clara para explicar lo que puede estar orbitando la estrella18 .

Adiós definitivo al telescopio espacial Kepler

Daniel Marín 16 ago 13

Ya nos despedimos del telescopio espacial Kepler el pasado mayo, pero ayer la NASA comunicó oficialmente que da por finalizados los intentos de restaurar el observatorio como cazador de exoplanetas. Kepler perdió los volantes de reacción número 2 y número 4 en julio de 2012 y en mayo de 2013, respectivamente. Por lo tanto, sólo cuenta con dos volantes operativos cuando en realidad necesita un mínimo de tres para llevar a cabo la búsqueda de planetas extrasolares. Durante estos meses el equipo de la NASA ha intentado devolver a la vida los volantes defectuosos, pero -y como se esperaba- sin éxito. Tras una última e infructuosa prueba de apuntado realizada el pasado 8 de agosto, la NASA ha tirado la toalla.

Telescopio Kepler (NASA).kepler5

Durante estas pruebas se hakepler6 comprobado el comportamiento de los volantes tanto para apuntado fino -necesario para descubrir exoplanetas- como en apuntado de menor precisión. En el primer caso la precisión en la orientación es del orden de varios milisegundos de arco, mientras que en el segundo ronda el segundo de arco. Una vez más, -y a diferencia de lo que dan a entender algunos medios– conviene recordar que es imposible reparar Kepler en el espacio. Primero, porque no está diseñado para ello y, segundo, porque el coste de una misión de rescate excedería el coste del propio telescopio, por no hablar de que se halla situado fuera de la órbita terrestre.

Tras descubrir más de 135 planetas y 3500 candidatos a exoplanetas, podemos decir adiós a Kepler definitivamente. ¿O no? El caso es que tenemos un telescopio espacial relativamente funcional y tampoco es cuestión abandonarlo a su suerte en el espacio. ¿Podemos sacarle algún partido? La NASA no lo ha decidido aún, pero existen varias propuestas. Todas ellas son muy parecidas y pasan por la continuación de las observaciones de Kepler con menor precisión, lo que permitiría obtener más datos de los candidatos a planetas más grandes y, con el tiempo, confirmar la existencia de muchos de ellos. También se espera descubrir más planetas gigantes usando TTVs (Transit Timing Variations), pero las supertierras y exotierras quedarían totalmente fuera de su alcance. Para ello, Kepler usaría los dos volantes aún en funcionamiento en conjunción con los sensores estelares y los propulsores de control de actitud. Operando en este modo la nave derivaría 1,4º en un periodo de cuatro días, más que suficiente para algunas observaciones.

Apuntado de Kepler con sólo dos volantes de inercia (NASA).

Telescopio Kepler (NASA).

Esta nueva misión extendida está a la espera de ser aprobada por la NASA. Hasta noviembre de este año la NASA está abierta a las propuestas de la comunidad científica internacional para decidir la naturaleza de la misión. A principios del año que viene la agencia decidirá si la financia o no y, si la respuesta es afirmativa, dará comienzo en el verano de 2014. Recordemos que Kepler es un telescopio espacial con un diámetro efectivo de 0,95 metros y que posee un único instrumento, consistente en un conjunto de 42 detectores CCD sin filtros que cubren 100º cuadrados de cielo (3,98 segundos de arco por píxel). Estos detectores convierten a Kepler en una magnífica plataforma para medidas fotométricas de precisión en el rango de longitudes de onda que va de 420 a 850 nm.

Dentro de unos meses podremos echar un vistazo a las propuestas para la segunda vida de Kepler y con toda seguridad habrá algunas muy interesantes. Lamentablemente, ninguna de ellas nos permitirá detectar exotierras.kepler9

IBEX

Interstellar Boundary Explorer

Names: Explorer 91; SMEX-10ibex1

Mission type: Astronomy

Operator: NASA

COSPAR ID: 2008-051A

SATCAT №: 33401

Website: http://www.ibex.swri.edu/

Mission duration: Planned: 2 years

Elapsed: 7 years, 11 months and 21 days

Spacecraft properties: Bus; MicroStar-1

Launch mass: 107 kg (236 lb)[1]

Dry mass: 80 kg (176 lb)[1]

Payload mass: 26 kg (57 lb)[1]

Dimensions: 95 × 58 cm (37 × 23 in)[1]

Power: 66 W (116 W max)[1]

Start of mission

Launch date: October 19, 2008, 17:47:23 UTC

Rocket: Pegasus XL

Launch site: Stargazer, Bucholz Airfield

Contractor: Orbital Sciencesibex2

Entered service: January 2009[1]

Logo del IBEX, mostrando el perfil de una cabra.

Orbital parameters

Reference system: Geocentric

Regime: High Earth

Semi-major axis: 178,975.8 km (111,210.4 mi)

Eccentricity: 0.48238

Perigee: 86,263.2 km (53,601.5 mi)

Apogee: 258,932.2 km (160,893.0 mi)

Inclination: 45.8582°

Period: 12,558.95 min

RAAN: 20.6126°

Argument of perigee: 175.652°

Mean anomaly: 357.024°

Mean motion: 0.114634 rev/day

Epoch: August 16, 2016, 12:23:45 UTC[2]

Revolution number: 330

Instruments: IBEX-Lo, IBEX-Hiibex3

Explorers program

← 90: AIM

92: WISE

IBEX Lo sensor

The ribbon of ENA emissions seen in the IBEX mapibex4

IBEX (Interstellar Boundary EXplorer o Explorador de la Frontera Interestelar) es un satélite de la NASA cuya misión es elaborar un mapa de la frontera entre el Sistema Solar y el espacio interestelar. El satélite forma parte del programa Small Explorer (Pequeño Explorador) de la NASA. IBEX fue lanzado por un cohete Pegasus XL el 19 de octubre de 2008.1 Su misión principal será la de explorar durante 2 años la frontera del Sistema Solar.

La misión está dirigida por el Instituto de Investigación del Suroeste de Texas, con el Laboratorio Nacional Los Álamos y el Centro de Tecnología Avanzada Lockheed Martin como instituciones investigadoras responsables de los sensores IBEX-Hi e IBEX-Lo, respectivamente. Orbital Sciences Corporation sumistrará el bus del satélite y proporcionará el laboratorio de pruebas ambientales. Lleva un transpondedor en banda S fabricado en España por Thales Alenia Space España

Planificación de la misión

La frontera de la heliosfera del sistema solar será mapeada midiendo la localización y magnitud de las colisiones de intercambio de carga que suceden en todas las direcciones, lo que acabará mostrando un mapa de la zona terminal del viento solar. La carga útil de este satélite consistirá en dos sensores que fotografiarán los átomos neutrales y energéticos: IBEX-Hi e IBEX-Lo. Cada uno de estos sensores constarán de un colimador que limitará el campo de visión, una superficie de conversión que transformará oxígeno e hidrógeno neutral en iones, un analizador electroestático que suprimirá la luz ultravioleta y seleccionará iones de un específico rango energético, y un detector que identificará y contará el número de iones. IBEX-Hi contará partículas de energía más alta que las de IBEX-Lo. La carga útil tendrá también una Unidad de Electrónica Combinada (Combined Electronics Units o CEU) que controlará los voltajes en el colimador y ESA que leerá y registrará datos de los detectores de partículas de cada sensor.

Parámetros de la misión

Este satélite tendrá una órbita altamente elíptica alrededor de la Tierra, que variará de entre 5.000 km en el perigeo hasta los 250.000-300.000 km2 (40-50 radios terrestres o 0,75 veces la distancia entre la Tierra y la Luna) en el apogeo.3 Esta órbita permitirá salirse del campo magnético terrestre y realizar sus observaciones durante ese intervalo. Esto es crítico debido al gran número de interferencias que provocaría la magnetosfera. Cuando el satélite se halle dentro de la magnetosfera (10-12 veces el radio terrestre o 70.000 km), realizará operaciones de mantenimiento y transmisión de datos hacia la Tierra. La estabilización del satélite será de rotación orientada hacia el Sol. El motor del satélite será de combustible sólido y será empleado para alcanzar dicha órbita.

Lanzamiento

IBEX fue lanzado el 19 de octubre de 2008, a bordo de un cohete Pegasus XL. Este cohete fue soltado desde un avión Lockheed L-1011 TriStar que despegó del Atolón Kwajalein, en el Pacífico Sur. La caída ocurrió a las 17:47:23 GMT1 Al ser lanzado en las proximidades del ecuador, este cohete podía transportar 16 kg más de carga que si hubiera sido lanzado desde el Centro espacial John F. Kennedy.

El IBEX fue acoplado a su cohete Pegasus XL en la Base de la Fuerza Aérea de Vandeberg en California. El cohete se acopló a su avión portador L-1011 el 6 de octubre de 2008, y partió de California el 10 de octubre. Llegó al Atolón Kwajalein el 11 de octubre y realizó el vuelo de lanzamiento del cohete el día 19 de octubre.ibex5

Investigadores

El investigador principal de la misión IBEX es David J. McComas.

El Satélite IBEX Detecta Atomos Veloces de Hidrógeno Neutro Viniendo de la Luna
31 de Julio de 2009.

El satélite IBEX de la NASA ha realizado las primeras observaciones de átomos de hidrógeno muy veloces provenientes de la Luna, después de décadas de especulación y búsqueda de pruebas de su existencia.

El viento solar, un flujo de partículas cargadas provenientes del Sol, se mueve por el espacio en todas direcciones a velocidades a menudo del orden del millón de kilómetros por hora. El fuerte campo magnético de la Tierra protege a nuestro planeta del viento solar. La Luna no tiene tal protección, debido a que su campo magnético es bastante débil, lo que provoca que el viento solar impacte sobre la superficie del satélite en el lado donde es de día.

Desde su magnífica atalaya en el espacio, el satélite IBEX ve cerca de la mitad de la Luna; un cuarto corresponde al lado donde es de noche y el otro cuarto al lado donde es de día. Las partículas de viento solar impactan sólo en el lado diurno, donde la mayoría quedan incrustadas en la superficie lunar, aunque algunas se dispersan en diferentes direcciones. La mayoría de estas últimas se convierten en átomos neutros al adquirir electrones de la superficie lunar.

David J. McComas, investigador principal del IBEX, y su equipo de científicos, estiman que sólo cerca del 10 por ciento de los iones del viento solar se refleja en la cara visible de la Luna como átomos neutros, mientras que el 90 por ciento restante queda incrustado en la superficie lunar. Algunas características de ésta, como por ejemplo el polvo, los cráteres y las rocas, influyen en el porcentaje de partículas que quedan incrustadas y en el de las partículas neutras, así como en las direcciones en las que se esparcen.

La misión primaria del IBEX es observar y mapear las complejas interacciones que se producen en los confines del sistema solar, donde los vientos solares del orden del millón de kilómetros por hora chocan contra el material interestelar del resto de la galaxia. El IBEX lleva a bordo los detectores de átomos neutros más sensibles transportados al espacio hasta ahora, permitiendo a los investigadores no sólo medir la energía de las partículas, sino además tomar imágenes precisas del lugar del que están viniendo.

El equipo publicará para finales del verano el primer mapa producido por el IBEX de todo el cielo, el cual mostrará los procesos energéticos que tienen lugar en los confines del sistema solar. El equipo no hará comentarios hasta que la imagen esté completa, pero McComas ya adelanta que el mapa no se parece a ninguno de los modelos previos.

El satélite Interstellar Boundary Explorer (IBEX), lleva desde el 2008 captando datos de los confines del Sistemaibex6 Solar. Con ellos se ha podido mapear por primera vez la cola que deja a su paso la burbuja magnética que envuelve el Sistema Solar, llamada heliosfera. El IBEX mide partículas espaciales que chocan contra la heliosfera y rebotan, emitiendo señales perceptibles. Procesando esos datos durante más de tres años, la NASA ha logrado obtener el siguiente mapa de la cola del Sistema Solar:

Las partes en amarillo y rojo representan zonas de la cola con partículas que se mueven más lentamente; las partes en azul corresponden a partículas que se mueven a alta velocidad.

Esta cola, compuesta de viento solar y campos magnéticos, se extiende casi de forma infinita tras el Sistema Solar hasta integrarse de nuevo con el universo. Pronto, el IBEX aportará más datos. Y más respuestas. [NASA]

Observaciones de IBEX Ayudan a Determinar el Campo Magnético Interestelar

 28.02.16.- Poco después de su lanzamiento en el 2008, el satélite IBEX de la NASA detectó una curiosidad en una zona estrecha del espacio: más partículas que fluyen a través de una larga y delgada cinta que en cualquier otro lugar en el cielo. El origen de la llamada cinta de IBEX era desconocido – pero su propia existencia abrió las puertas a la observación de lo que está fuera de nuestro sistema solar.

Ahora, un nuevo estudio que utiliza datos de IBEX y simulaciones de la frontera interestelar – que se encuentra en el mismo borde de la burbuja magnética gigante que rodea nuestro sistema solar llamada heliosfera – describe mejor el espacio en nuestro vecindario galáctico. El documento, publicado el 8 de febrero de 2016, en la revista Astrophysical Journal Letters , determina con precisión la fuerza y la dirección del campo magnético fuera de la heliosfera, revelando qué fuerzas dominan la galaxia.

El nuevo documento se basa en la teoría del origen de la cinta de energía, descubierta por el IBEX, según la cual las partículas que fluyen de esta especie de cinta son material solar que se refleja hacia nosotros tras un largo camino a la periferia del campo magnético del sol. La heliosfera, que rodea nuestro sistema solar, está formada de lo que se conoce como el viento solar, un gas ionizado, cuyo movimiento de partículas se hace más complicado al acercarse a la región fronteriza de la heliosfera.ibex7

Mucho más allá de la órbita de Neptuno, el viento solar y el medio interestelar interactúan para crear una región conocida como la heliopausa interior, delimitada en el interior por el choque de terminación, y en el exterior por la heliopausa. Image Credit: NASA/IBEX/Planetario Adler

 “La teoría dice que algunos protones del viento solar se dirigen hacia el Sol como átomos neutros tras una compleja serie del intercambio de cargas, creando la cinta de IBEX”, dijo Eric Zirnstein, científico espacial en el Instituto de Investigación del Suroeste en San Antonio, Texas, y autor principal del estudio. “Las simulaciones y observaciones de IBEX determinan este proceso, que suele durar de tres a seis años, como el origen más probable de la cinta de IBEX”.

Fuera de la heliosfera se encuentra el medio interestelar, con plasma que tiene diferente velocidad, densidad y temperatura que el plasma del viento solar, así como gases neutros. Estos materiales interactúan en el borde de la heliosfera para crear una región conocida como la heliopausa interior, delimitado en el interior por el choque de terminación (termination shock), – que está tan lejos de nosotros como más de dos veces la órbita de Plutón – y en el exterior por la heliopausa, el límite entre el viento solar y el medio interestelar relativamente denso.

Algunos protones del viento solar que fluyen desde el Sol a esta región límite van a ganar un electrón, haciéndolos neutro y permitiendo el cruce de la heliopausa. Una vez en el medio interestelar, pueden perder electrones de nuevo, haciendo que giren alrededor del campo magnético interestelar. Si esas partículas recogen otro electrón en el lugar y momento adecuado, pueden ser despedidos de nuevo hacia la heliosfera, viajando por todo el camino de vuelta hacia la Tierra, y chocando con el detector de IBEX. Las partículas contienen información acerca de todo lo que interacciona con el campo magnético interestelar, y al chocar con el detector nos pueden dar una visión sin precedentes de las características de esa región del espacio.

“Los nuevos resultados pueden ser utilizados para comprender mejor la interacción de nuestro entorno espacial con el entorno interestelar fuera de la heliopausa,” dijo Eric Christian, científico del programa IBEX en el Centro de Vuelo Espacial Goddard de la NASA en Greenbelt, Maryland. “A su vez, la comprensión de esta interacción podría ayudar a explicar el misterio de lo que causa la creación de la cinta de IBEX de una vez por todas”.ibex8

Murallas de Hamadán

Hamadán o Hamedan (en persa: همدان ) es una ciudad en el oeste de Irán, localizada aproximadamente a 400 km al sudoeste de Teherán. Es la capital de la provincia de Hamadán. Su población se estima en 550.284 habitantes (2005), y su altura es de 1.850 m sobre el nivel del mar.

Se cree que Hamadán es una de las ciudades más antiguas del mundo, y la de mayor antigüedad de Irán. Algunos historiadores apuntan al III milenio a. C. como el momento de su construcción, y de acuerdo con las crónicas asirias, data de al menos el siglo XII a. C.hamadan1

Durante la primera mitad del siglo VI a. C. fue la capital del rey Astiages de Media, según los historiadores griegos, hasta que Ciro II, rey de los persas, la conquistó en el año 549 a. C. (el sexto año del reinado de Nabónido en Babilonia). Su antiguo nombre persa fue Ecbatana (Hañgmatana en persa antiguo, Agbatana según Esquilo, Agamatanu en la Inscripción de Behistún, y escrito como Aga’mtanu por Nabónido).

Es el lugar de nacimiento de Shirin Ebadi, ganadora del Premio Nobel de la Paz de 2003. También es el lugar donde se ubica la tumba de Avicena.

A mediados del Siglo VII los árabes se adueñaron de Ecbatana, a la que llamaron Hamadán, relegándola a capital de provincia hasta que los sultanes selyucíes la elevaron a capital, ya en el Siglo XII Ecbatana fue invadida por todas las avalanchas asiáticas, mongolas o turcas, debido a lo cual decae notablemente.

Su fama medieval gira alrededor de sus hijos o vecinos Avicena que en él muere y es sepultado y los poetas árabes Al-Hamadani y Bábá Táhir, hijo del célebre `Limar Jayyám.

Arqueología

León de Hamadánhamadan2

La ciudad era más rica y más bella que todas las otras ciudades en el mundo, a pesar de que no tenía ninguna muralla de la ciudad, la ciudadela tuvo impresionantes fortificaciones. Esto confirma las palabras de los medos que eran “de Herodoto a vivir alrededor del ‘muro, pero Polibio ofrece las dimensiones más plausible: la circunferencia de la ciudadela fue de 1.300 metros.

También afirma que los constructores utilizaron cedro y madera de ciprés, que fue cubierto con oro y plata. Las tejas, columnas y techos fueron enchapados en plata y oro.

La ciudad tiene un enorme y pintoresco bazar, además de numerosos monumentos, como la tumba del médico y filósofo persa Avicena (980 – 1037) y el Mausoleo de los personajes bíblicos Esther y su primo y protector Mardoqueo.

Un monumento final es el famoso “león de Hamadan”. Se ha argumentado que esta antigua estatua pertenece al monumento funerario de Hefestión.

La campaña contra los medos concluyó con la aplastante victoria de los ejércitos caldeos. Arfaxad había fortificado Ecbatana, su capital, con unas impresionantes murallas de enormes piedras talladas. Treinta y cinco metros de alto y veinticinco de espesor cuentan que medían; dimensiones desmesuradas que inducen al escepticismo, máxime conociendo la afición hiperbólica de las crónicas míticas. Pero por más excavacihamadan3ones arqueológicas que se hagan nos quedaremos con las dudas, porque Nabucodonosor puso especial empeño en arrasar la ciudad y no dejar el mínimo vestigio de la antaño orgullosa ciudad (5). Arxafad, poco antes de la derrota, huyó con sus más leales cortesanos hacia las cercanas montañas, pero antes de alcanzar refugio, Nabucodonosor y los suyos los alcanzaron en un pequeño valle.

Hamadán actual

Según algunas citas:

 En La Biblia – Judit 1:

1 Cuando Nabucodonosor estaba en el año doce de su reinado sobre los asirios en Nínive, su capital,a Arfaxad era rey de los medos en Ecbatana.b 2 Este fue quien construyó una muralla de piedras labradas alrededor de Ecbatana. Cada piedra tenía un metro y treinta y cinco centímetros de ancho por dos metros y sesenta centímetros de largo; la altura de la muralla era de treinta y un metros y medio, y de veintidós metros y medio el espesor. 3 En las puertas de la ciudad construyó torres que medían cuarenta y cinco metros de altura, sobre bases de veintisiete metros de ancho. 4 Las puertas mismas las hizo de treinta y un metros y medio de altura por dieciocho metros de anchura, para que su poderoso ejército pudiera desfilar con su infantería en formación.c ……….

En la Historia del Arte:

Los Estados marítimos de la Grecia asiática fueron satrapías persas; hasta la misma Fenicia, donde la dominación de Nínive no se hizo nunca efectiva, transmitió a Persia, en tiempos de Darío, su soberanía marítima, y por primera vez los ejércitos asiáticos atravesaron los pasos del mar que separaban Asia de Europa.

Las dos primeras capitales del nuevo Imperio fueron Ecbatana y Pasargada, dos urbes que acreditaban ya una larga historia. Ecbatana, por ejemplo, era la primitiva residencia de los reyes medos, y era natural que Ciro y sus sucesores tuvieran empeño en restaurar y habitar la misma capital de sus antiguos aliados, que habían constituido un estado poderoso y de prestigio. Por lo que no es raro que Ciro quisiera establecer la capitalidad del reino en una ciudad que él creía a la altura de sus pretensiones como soberano de un gran estado. Herodoto, que conoció la antigua ciudad de Ecbatana sólo por referencias, hizo de ella una fantástica descripción que ha quedado legendaria en los anales de la historia; en dicho relato insiste sobre sus siete reductos de murallas de distintos colores y aventura las dimensiones de cada uno.

Otros:

Desde las montañas cercanas, Ecbatana se presentó ante los ojos de los romanos como una aparición mítica, semejante a un primoroso bajorrelieve tallado sobre las laderas de verdes colinas por las hábiles y poderosas manos del mismo Vulcano, dios de los artesanos y constructores. Bien protegida por todas partes por las escarpadas montañas de cumbres nevadas resplandecientes bajo el sol como ópalos y topacios sobre el cielo de zafiro, aquella residencia de verano de los soberanos medos, persas y posteriormente también partos carecía de murallas salvo el palacio real, situado en la parte más alta de la ciudadela, rodeada por siete reductos de muros de diferentes colores: blanco, negro, rojo, azul, púrpura, plata y oro.

Más tarde, edificó en aquel mismo sitio un gran palacio con siete reductos de muros que mandó a pintar de distintos colores que simbolizaban el Sol, la Luna y los cinco planetas. Según Herodoto, Deyoces hizo levantar esas murallas por su propia seguridad y como protección de su residencia y ordenó a todos sus súbditos establecerse en los alrededores de la fortaleza. Así nació la ciudad que recibió el nombre de “lugar de reunión” porque todos los monarcas, desde Deyoces hasta Astiages, el último rey de Media derrocado por Ciro el Grande.

Historias – Libro I: CLÍO:hamadan4

Al punto mismo trataron de la persona que elegirían por monarca, y no oyéndose otro nombre que el de Deioces, á quien todos proponían y elogiaban, quedó nombrado rey por aclamación del congreso. Entonces mandó se le edificase un palacio digno de la majestad del imperio, y se le diesen guardias para la custodia de su persona. Así lo hicieron los Medos, fabricando un palacio grande y fortificado en el sitio que él señaló, y dejando á su arbitrio la elección de los guardias entre todos sus nuevos vasallos. Después que se vio con el mando los precisó á que fabricasen una ciudad, y que fortificándola y adornándola bien, se pasasen á vivir en ella, cuidando menos de los otros pueblos: obedeciéndole también en esto, construyeron los Medos unas murallas espaciosas y fuertes, que ahora se llaman Ecbatana , tiradas todas circularmente y de manera que comprenden un cerco dentro de otro. Toda la plaza está ideada de suerte que un cerco no se levanta más que el otro, sino lo que sobresalen las almenas. A la perfección de esta fábrica contribuyó no solo la naturaleza del sitio, que viene á ser una colina redonda, sino más todavía el arte con que está dispuesta, porque siendo siete los cercos, en el recinto del último se halla colocado el palacio y el tesoro. La muralla exterior, que por consiguiente es la más grande, viene á tener el mismo circuito que los muros de Atenas . Las almenas del primer cerco son blancas, las del segundo negras, las del tercero rojas, las del cuarto azules y las del quinto amarillas, de suerte que todas ellas se ven resplandecer con estos diferentes colores; pero los dos últimos cercos muestran sus almenas el uno plateadas y el otro doradas.