Este Mundo, a veces insólito
Calendario
agosto 2022
L M X J V S D
1234567
891011121314
15161718192021
22232425262728
293031  

Sociedad

Mapa de la Cottoniana

Biblioteca Cotton

País: Reino Unido

Tipo: colección y colección de manuscritos

Ubicación: ciudad de Westminster

Coordenadas: 51°31′46″N 0°07′37″O

Página web oficial

Los Evangelios de Lindisfarne son tan solo uno de los tesoros coleccionados por Sir Robert Bruce Cotton.

La Biblioteca Cotton o Cottoniana (Cotton Library o Cottonian Library) fue una colección privada de Sir Robert Bruce Cotton M. P. (15711631), anticuario y bibliófilo, que incluía libros, manuscritos, monedas y medallas. La utilizaron los principales eruditos de la época, entre los que se encontraban Francis Bacon, Walter Raleigh y James Ussher. Richard James ejerció como su bibliotecario.1

A la biblioteca de Sir Robert se agregaron más tarde numerosos libros y artefactos procedentes de la disolución de los monasterios, colección conocida como la Biblioteca del Rey o Biblioteca Regia (King’s Library o Regius Library), y formó la base de lo que hoy es la Biblioteca Británica. El conjunto se convirtió en el mayor recurso único conocido de literatura en inglés antiguo e inglés medio. Varios trabajos muy conocidos, como Beowulf, el poema Perla y los Evangelios de Lindisfarne, sobreviven hoy solo gracias a la biblioteca de Sir Robert.

Historia

Formación de la colección

A principios del siglo XVII hasta los registros oficiales del Estado y los papeles importantes se conservaban pobremente, y a menudo eran retenidos en manos privadas, desatendidos o destruidos por los funcionarios. Sir Robert recopiló y almacenó cien volúmenes de papeles oficiales, lo que en la práctica estableció un precedente en el derecho inglés. En 1622, la casa de Sir Robert estaba con su biblioteca justo al norte del Parlamento. Strype se refiere así a la mansión Cotton: «en el pasaje que va de Westminster Hall al patio del Palacio Viejo, un poco más allá de las escaleras que suben a la capilla de San Esteban, hoy el Parlamento [es decir, en el presente la Cámara de los Comunes], está la casa de la antigua y noble familia Cotton, donde se conserva una muy estimable biblioteca de volúmenes manuscritos, tomados tanto del país como del extranjero». Sir Christopher Wren describió la casa en su época como «en una condición muy ruinosa».2​ La biblioteca era un recurso valioso y el lugar de reunión tanto de anticuarios y eruditos como de políticos, incluyendo a los líderes de la oposición, como Pym, Selden, Wentworth o Sir Edward Coke.

Una prueba de tal importancia era muy valiosa en aquel tiempo, en el que la política del reino se dirimía históricamente entre el rey y el Parlamento. Sir Robert supo que su biblioteca era de vital interés público y, aunque permitió libremente su consulta, le hizo objeto de hostilidad por parte del Gobierno. El 3 de noviembre de 1629 fue arrestado por difundir un panfleto tachado de sedicioso (en realidad había sido escrito quince años antes por Robert Dudley) y la biblioteca fue clausurada con ese pretexto. Cotton fue liberado el 15 de noviembre, y se le levantaron los cargos al siguiente mayo, pero la biblioteca permaneció clausurada hasta la muerte de Sir Robert; siendo restaurada a su hijo y heredero Sir Thomas Cotton, en 1633. La narración moderna más prolija, aunque incompleta, de estos hechos es la proporcionada por D. S. Berkowitz en 1988.3

Donación de la biblioteca

El nieto de Sir Robert, Sir John Cotton, donó la biblioteca a la nación de Gran Bretaña. Su historia temprana se resume en el texto introductorio de las Actas del Parlamento 12 y 13 Gul. III c.7 de 1700/1, que establecen mediante estatutos un régimen fiduciario para la Biblioteca Cottoniana:4

Sir Robert Cotton, más tarde Barón de Connington en el Condado de Huntingdon, a su propio oneroso cargo y expensas y con la ayuda de los anticuarios más eruditos de su tiempo, coleccionó y adquirió los más útiles manuscritos, libros, pergaminos [registros] y otros escritos en muchos idiomas de gran uso y servicio para el conocimiento y preservación de nuestra identidad, tanto religiosa como civil. Estos manuscritos y otros escritos fueron recopilados tanto de ultramar como de varios coleccionistas privados de esas antigüedades en este reino, [y] son generalmente estimados hoy como la mejor colección de su clase en el mundo. Y como sea que la mencionada biblioteca ha sido conservada con el mayor cuidado y diligencia por Sir Thomas Cotton, hijo del mencionado Sir Robert y por Sir John Cotton de Westminster, nieto vivo del mencionado Sir Robert, y ha sido muy aumentada e incrementada por ellos y alojada en un lugar muy adecuado en la antigua mansión del mencionado Sir John en Westminster, muy conveniente para ese propósito. Y como sea que el mencionado Sir John Cotton, siguiendo los deseos e intenciones de sus mencionados padre y abuelo, está contento y deseoso de que las mencionadas mansión y biblioteca continúen en su familia y nombre y no sean vendidas o dispuestas de otra manera ni malversadas, y que la mencionada biblioteca deba ser mantenida y conservada con el nombre de Biblioteca Cottoniana para el público uso y beneficio […]

A partir de estos estatutos, se nombraron fiduciarios para la biblioteca, que la trasladaron desde la ruinosa Cotton House. Primero fue a Essex House, en el Strand, pero temiendo el riesgo de un incendio fue de nuevo trasladada a Ashburnham House, un poco al oeste del Palacio de Westminster.

El incendio de Ashburnham House

El Génesis Cotton resultó prácticamente destruido por el incendio de Ashburnham House.

El 23 de octubre de 1731 se produjo un incendio en Ashburnham House, en el que se perdieron numerosos manuscritos, mientras que otros papeles resultaron chamuscados o dañados por el agua. En total se perdió o dañó la cuarta parte de la colección.5​ El bibliotecario, Dr. Bentley, escapó de las llamas con el valiosísimo Codex Alexandrinus bajo el brazo, una escena presenciada y más tarde descrita a Lady Charlotte Sundon por Robert Freind, director de la Westminster School.6​ El portavoz Onslow, como uno de los fiduciarios estatutarios de la biblioteca, dirigió y supervisó personalmente un notable programa de restauración para los medios de su tiempo. El informe publicado de su trabajo resulta de importancia fundamental en la bibliografía sobre la biblioteca.7​ Afortutadamente, se habían hecho copias de algunos de los manuscritos perdidos (aunque no de todos), y muchos de los dañados pudieron ser restaurados de forma satisfactoria en el siglo XIX.

Clasificación

Sir Robert Cotton organizó su biblioteca mediante una referencia a la estantería, estante y posición de un determinado volumen. Cada estantería de la biblioteca estaba coronada por el busto de un césar de la Antigua Roma, por lo que su notación se componía de:

  • el nombre de un césar para la estantería;
  • una letra mayúscula para el estante, comenzando por la A para el estante superior de cada estantería;
  • un número romano para el volumen entre los contenidos en el estante.

De ese modo, los dos manuscritos más famosos de la biblioteca se denominan, por ejemplo, «Cotton Vitellius A.xv» y «Cotton Nero A.x». Para el día a día de Sir Robert eso significaba «bajo el busto de Vitelio, en el estante superior, el decimoquinto volumen», para el Liber Monstrorum del manuscrito de Beowulf; o «ve al busto de Nerón, estante superior, décimo tomo» para el manuscrito que contenía todos los trabajos del poeta Pearl. En la Biblioteca Británica aún se catalogan esos valiosos tomos por las referencias de Cotton.

De este esquema de clasificación se apartaba ligeramente la estantería dedicada al emperador Augusto, que estaba dedicada a planos y otros elementos de gran formato.

Mappa Mundi anglosajón, 1025-1050

Dibujante: Anónimo

Media: pigmentos sobre papel vitela

Fecha: 1025

El ‘mapa del mundo anglosajón’ contiene la representación más antigua conocida y relativamente realista de las Islas Británicas. Fue creado, probablemente en Canterbury, entre 1025 y 1050, pero probablemente se base en última instancia en un modelo que data de la época romana. Esto mostraba las provincias del imperio romano, de las cuales ‘Britannia’ (Inglaterra) era una. El mapa fue revisado y actualizado alrededor del año 800 y nuevamente alrededor del año 1000. Se agregó nueva información, pero en cada etapa ocurrieron errores y malentendidos en el proceso de copiado.

Como la mayoría de los primeros mapas, este tiene el Este en la parte superior. Sin embargo, las Islas Británicas (abajo a la izquierda) son inmediatamente reconocibles y se muestran las Orkneys, Scillies, Channel Islands y las islas de Man y Wight. La forma tortuosa de Escocia está particularmente bien dibujada. Londres, la capital sajona de Winchester y Dublín se indican con símbolos de ciudades de estilo romano. El tamaño de la península de Cornualles es exagerado, lo que probablemente refleja la importancia de sus minas de cobre y estaño en el mundo antiguo. Lo más tentador de todo es lo que parecen ser dos figuras luchadoras en la península. ¿Podrían referirse al conflicto entre los sajones y los nativos británicos en los siglos posteriores a la partida de los romanos a principios del siglo V, que dio origen a la leyenda del Rey Arturo?

El mapa de Cottoniana se sale de la tradición cartográfica medieval

Basado en el viaje del Arzobispo Sigeric de Canterbury desde Roma, se pensó que el Mapa de Cottoniana fue dibujado por primera vez alrededor del año 992-994. Después de un análisis más profundo del mapa del mundo, se decidió que en realidad fue ilustrado más cerca de 1025-1050. Curiosamente, este mapa se sale de las líneas de la cartografía medieval tradicional. Jerusalén no está en el centro del mundo, el Jardín del Edén no se encuentra en ninguna parte, y el este está en la cima en lugar del norte.

TÍTULO: El Mapa Cottoniana o Anglosajón

FECHA: ca. 995 dC

AUTOR: del Periegsis de Prisciano

DESCRIPCIÓN: La Cotton Tiberius es el ricamente iluminada del siglo XI manuscrito en el algodón colección de los británicos Biblioteca y contiene uno de la mas antigua y mas excelentes mapas del mundo. Llamado Cottoniana o Mapa anglosajón, data de 995-1050, justo antes la conquista normanda y no parece pertenecer a cualquiera de los identificables “familias” de la edad media mapas, como lo describe MC

Se dice que este mapa es el último de una larga tradición de mapamundis circulares que se trabajaron sin interrupción desde la antigüedad clásica, diseñados para mostrar todas las tierras contenidas entre las fronteras del imperio Romano. No ha quedado ningún original de estos mapas anteriores al Cottonian, pero sí conocemos la descripción precisa del “Orbis Terrarum” que dibujó Marcus Vipsanius Agrippa, con mucho más valor simbólico que geográfico, y que fue el inspirador de todos ellos. Este Mapamundi Anglosajón, aparte de ser el último mapa romano, también es el primero de la escuela anglonormanda cuyo máximo exponente serán los grandes discarios del siglo XIII.

Oriente. “Hic abundant leones”. Y en la esquina de la derecha el arca de Noé.


Los espacios en blanco de los antiguos mapas romanos estaban ocupados por dragones, serpientes o leones. Era una manera de indicar espacios desconocidos ante los que había que extremar precauciones. El mapamundi anglosajón de Cotton, también los tiene. Arriba a la izquierda, en la parte de Oriente que se acerca al norte -observemos que se trata de un mapa orientado y Oriente se ubica en la parte superior-, detrás del mar Caspio y de los montes caucásicos, avisa: “Hic abundant leones”. En África, entre Cartago y Mauritania, lo que hay son serpientes: “Zugis regio ipsa est in Affrica, est enim fertilis, sed ulterior bestiis et serpentibus plena” (También la región de Zugis está en África. Es muy fértil, pero después está llena de bestias serpientes”.

El mapa está centrado en el Mediterráneo occidental, nombra las cuatro grandes civilizaciones de la antigüedad: Babilonia, Media, Macedonia y Roma, la zona de Palestina aparece dividida entre las tribus de Israel y no se dibuja el paraíso en el extremo de Oriente.

Africa. “…bestiis et serpentibus plena””. Y en el extremo sur, la Antípoda y en ella, cinocéfalos (hombres con cabeza de perro).

Aunque los contornos de la parte occidental de Europa se comprimen para ajustarlos al espacio disponible, los perfiles están trazados con realismo y son reconocibles. No faltan detalles míticos, por ejemplo, la entrada del Mediterráneo por el estrecho de Gibraltar está flanqueada por la torres de Hércules. Las costas de Inglaterra aparecen especialmente bien trabajadas. Es el más antiguo de los mapas medievales en los que las costas de Inglaterra, lugar donde se elaboró el mapa, aparecen reconocibles y ajustadas a su forma real, aunque a medida que se va acercando al norte las formas se diluyen y acaba deshaciéndose en un rosario de islas. También queda descolgada la península escandinava. Evidentemente los pormenores del extremo norte no eran demasiado conocidos.

Extremo occidental del mundo. Inglaterra, España, las columnas de Hércules y el norte de África.

Ibn Hawqal

Ibn Hawqal

Nacimiento::943; Nísibis (Turquía)

Fallecimiento: 988

Religión: Islam

Ocupación: Comerciante, geógrafo y escritor

Mapa del mundo del siglo X, por Ibn Hawqal.

Muḥammad Abū’l-Qāsim Ibn Ḥawqal (en árabe, محمد أبو القاسم بن حوقل‎) (Nisibis,1​ 943 -988) fue un musulmán del siglo X, geógrafo, escritor y cronista. En el año 977 escribió la obra por la que es famoso llamada Ṣūrat al-’Arḍ (en árabe, صورة الارض‎; “La faz de la Tierra”).

Lo poco que se sabe de su vida se extrapola de su libro, que fue una revisión y extensión de la obra Masālik ul-Mamālik de Istakhri (951). La cual a su vez era una edición revisada de Ṣuwar al-aqālīm de Ahmed ibn Sahl al-Balkhi, quien la escribió hacia el 921.

Ibn Hawqal fue claramente más que un editor; era un viajero que pasaba su tiempo escribiendo sobre las regiones y cosas que veía. Pasó los últimos 30 años de su vida viajando a lugares remotos de Asia y África. Uno de sus viajes lo llevó 20° al sur del ecuador a lo largo de la costa de África Oriental. Una de las cosas que notó fue que había muchas personas viviendo en zonas que los griegos, basados en la lógica en lugar de en la experiencia, habían dicho que debía ser inhabitable.

Sus descripciones eran exactas y de mucha ayuda para los viajeros. Ṣūrat al-’Arḍ incluyó una descripción detallada de la España musulmana, de Italia y particularmente de Sicilia, tierra de la que critica muchos aspectos, como la falta de inteligencia de sus habitantes y desconocimiento de la ley islámica.2​ Ibn Hawqal mencionó que la zona de Fraxinet (La Garde-Freinet) era cultivada profusamente por los habitantes musulmanes, y les acredita con un número de innovaciones agrícolas y de pesca para la región.

También menciona las “Tierras de los Romanos”, término utilizado por el mundo musulmán para denominar al Imperio bizantino. De ellas, entre otras cosas, escribe su observación de primera mano que 360 idiomas se hablan en el Cáucaso, con las lenguas azerí y persa como lenguas vehiculares a través del Cáucaso. También da una descripción de Kiev, y se dice que mencionó la ruta de los búlgaros del Volga y los jázaros, según Sviatoslav I de Kiev. También mencionó un mapa cartográfico de Sind, además de su geografía y cultura y las del río Indo.

El trabajo de Ibn Hauqal fue publicado por M. J. de Goeie (Leiden, 1873). Un epítome anónimo del libro fue escrito en 1233.

Ibn Haqal (970) de Bagdad. (Kitab Surat al-Ardh) (La forma de la tierra). También conocido como:

(al-Masalik wa’l-Mamalik)

La imagen de la izquierda es un mapa del Océano Índico. No se encuentra en el manuscrito original de ibn Hawqal sino en las traducciones persas del mismo. (mapa encontrado en el atlas de Miller)

A la derecha: Las fuentes del Nilo también tomadas de una traducción persa del libro de Ibn Hawqals

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dos variaciones más del mapa del Océano Índico de las traducciones persas del manuscrito de Ibn hawqal en el que se menciona a Zangebar o Zankebar.

Tomado de la traducción francesa; Configuración de la Terre.

También extractos de: – Marcel Devic; El país de los Zendjs

Uno de sus viajes lo llevó 20 grados al sur del ecuador (Sofala) a lo largo de la costa africana. Una de las cosas que notó fue que había un gran número de personas viviendo en áreas que los griegos decían que eran inhabitables.

No menciono los países de los negros del Magreb, ni Buja, ni los Zendjs, ni los demás grupos que viven en su vecindad, porque la buena organización de los imperios viene con convicciones religiosas, buenas costumbres y sabias instituciones, y la conservación de la riqueza depende de un método justo de gobierno. O aquellos descuidan esas cualidades o no participan de ellas y por eso necesitan un lugar diferente desde el punto de vista del desarrollo de los otros imperios.

En cuanto a la extensión del territorio, desde el extremo norte hasta el límite sur, comienza desde la costa del Océano para llegar al territorio de Gog y Magog, pasando por el territorio de los Esclavos, pasando por la región de el interior esclavos Búlgaros, y los Esclavos, más allá el país de los Bizantinos, la tierra de Egipto, y Nubia, se extiende por los desiertos entre las tierras de los Negros y los Zendjs, para terminar en el Océano….

Hay golfos en la región de los Zendjs, así como en las cercanías de las tierras de los bizantinos, donde también hay mares, pero no los mencionaremos porque son pequeños en comparación con los otros mares, y también porque hay son tantos….

Abisinia se extiende a lo largo del mar Rojo, que es en realidad el mar Pérsico, y que llega hasta la tierra de los zendj. Del otro lado está limitada por el desierto situado entre Nubia y el mar Rojo, y otra frontera va a lo largo de Buja y el desierto infranqueable. El territorio de los Zendjs es el más largo de todos los países negros, limita con los abisinios…. (Todo esto lo copió textualmente de Istakhri)

El imperio indio está situado frente a la tierra de los zendj, en la parte oriental del mar Pérsico…

Luego este mar se extiende a lo largo del mar Abisinio, llega al final de la tierra de Nubia para llegar a las regiones de los Zendjs, que son las más grandes de estas áreas. Después de eso, el mar continúa entre los países del Islam…

Un extracto de una batalla en el Alto Egipto entre las fuerzas del emir y la tribal Buja:
Qummi también tiene versos del Corán escritos en estandartes, colocados en una línea imponente y atados a las lanzas, y los hace proclamar en la madrugada; busquen aquí, soldados de la Buja, los mensajes del emir de los creyentes. Los Buja se dispusieron para la batalla, al ver esto, se vuelven curiosos y varios abandonan las filas para acercarse. Qummi había hecho poner las banderas a los camellos que llevaban los tambores. Cuando la Buja se encuentra entre las pancartas escritas, los Zendjis comienzan a tocar los tambores, las filas de la Buja se rompen y huyen en desorden. Este bien podría ser un ejemplo más de mercenarios Zanj en el ejército egipcio.

A la altura de la cuenca de Yemen, el mar se llama mar de Adén, y este hasta Adén, luego se llama mar de Zendjs, y esta frente a Omán donde se dirige hacia el mar de Persia. Es un mar que se vuelve tan grande que atravesarlo hasta la tierra de los Zendjs son 700 parasangs. (1980 millas) Es un mar oscuro y tenebroso, bajo su superficie no se ve nada. Cerca de Adén hay un caladero de perlas, que son traídas a Adén.

Después de pasar Omán, pasar los límites del Islam y continuar hasta Ceilán, este mar toma el nombre de Mar Pérsico. Alcanza una superficie muy grande. En la orilla opuesta están las tierras de los Zendjs.

La tierra de Abisinia….. Después de eso, el territorio continúa hasta la tierra de los Zendjs, situada frente a Aden….. . Esas minas de oro se extienden (desde Abisinia) hasta la tierra de los Zendjs a lo largo del mar… Siguiendo ciertos dichos hay en la tierra de los Zendjs regiones frías, en las que viven Zendjs blancos. Ya dije que este país es miserable, con poca gente pocas tierras poco cultivadas, excepto el área alrededor de la residencia del rey….

El océano del sur… pasa al sureste de Sama y Ghariwa, en un país con innumerables habitantes, hasta llegar al desierto que nadie ha cruzado todavía.

Entre el interior del país y las regiones de los Zendjs, hay grandes baldíos de arena, que antiguamente eran transitables, esa era la ruta de Egipto a Ghana….

Nadie conoce las fuentes del Nil: de hecho, el Nil sale de un desierto infranqueable, más allá de la tierra de los Zendjs, y penetra en la región de los Zendjs, atraviesa las partes desiertas y cultivadas de Nubia, luego riega los campos, ininterrumpidamente hasta su llegada a Egipto.

El autor del libro pretende que nadie conoce las fuentes del Nil y que este río sale de los desiertos situados detrás de las tierras de los Zandjs. He visto en un tratado de geografía que las fuentes del Nil están situadas en dos lagos circulares, alimentados por cinco ríos que vienen de la montaña Qumr. Cada uno de esos dos lagos da pájaro a 4 ríos que se arrojan en un lago circular en el primer clima. Su diámetro se divide en dos partes, de las cuales el centro está a 53 grados. de longitud y a 2° 31 min de latitud del primer clima. De este último lago sale un río, que es el Nilo de Egipto agrandado por un río que parte del ecuador a 59° 31′ de longitud. Corre hasta cerca de Nubia…..

El banco de arena cruza el mar y se encuentra de nuevo frente a Shihr y Mahra, en la tierra de los Zendjs, donde la arena es del mismo tipo que la de Shihr…..

La ciudad más grande después de Chiraz es Siraf, es casi tan grande como Chiraz. Las casas de Chiraz son de madera de teca y otro tipo que se importa de la tierra de los Zendjs, las casas tienen varios pisos, como en Fostat…..

En una disputa con un rico armador y comerciante ocurre la siguiente oración:
Es raro que uno de sus barcos vaya a las regiones de la India, los Zendjs o China con un asociado o alguien con poderes delegados, pero a veces da el beneficio de una carga gratis, sin pedir pago o compensación.

¿Dónde está, pues, esa tierra de los negros, que tiene siete años, en el cielo o bajo tierra? O la totalidad de sus países se sitúan en el segundo clima. Partiendo de Ghana en el Océano, pasando por Kugha, Sama, Gharayu, Kazam, atravesando la estepa que separa a los Zendjs del Océano, Nubia, Abyssinie, los Zendjs, para llegar con el resto de sus regiones a las regiones Indias, al Mar de Persia y de la India. Todo este espacio no es más de 250 días de caminata y en esos territorios el ancho nunca supera un mes de caminata.

Entre la tierra de los negros y el océano (alrededor) en el sur hay un desierto donde el enorme calor destruye toda vida. Al igual que el frío ha destruido toda la vida entre el Océano del Norte y las tierras de Yadjoudj y Madjoudj (Gog y Magog).

Todos esos Zendjs, los más bajos de los pueblos, no son musulmanes y no conocen la justicia ni las buenas costumbres.

(cuando se habla de NW afr.) ……el ámbar gris tiene el mismo valor que el oro o los esclavos negros

Ubica Qumbala en su mapa frente al desierto (mafaza) entre Bilad-al-Habash (etiopia) y Bilad al-zanj.

 

 

 

 

 

 

 

Mapa del mundo y variaciones encontradas en diferentes manuscritos, en su mayoría traducciones persas.
1 Origen del Mar Pérsico
2 Tierra de los Zendjs
3 Desierto que separa a los Zendjs de Abisinia

4 La tierra de Abisinia
5 Desierto y baldío de Budja

En la parte superior; Mapa de Arabia
1 La región y los distritos de los Zendjs,  el desierto que separa a los Zendjs del Abismo
2 la tierra de Abisinia
3 Berberá

Arriba: Mapa del Océano Índico
1 La tierra de Abisinia el desierto que separa a los Zendjs de el abisino la tierra de los zendjs
2 Berberá
3 Difícil
4 Nilo
5 La montaña de Qumr

                       

La isla de QANBALA

Arriba: El Nilo
1 Montaña Qumr 9 Cataratas
2 primer lago, segundo lago 10 Assouan
3 línea ecuatorial 11 tercer clima
4 primer clima 12 Misr
5 lago 13 Djazira
6 brazo 14 Guizeh
7 capital of Nubia  15  Alexandrie
8 segundo clima 16 el mar

Nota: este hermoso mapa está disponible en Internet con el título: Las fuentes del Nilo por Ibn Hawkal

Estas no son las Fuentes del Nilo sino el Nilo que desemboca en el Mediterráneo.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Organizado por www.Geocities.ws

Limes Porolissensis

Limes Porolissensis

Ubicada en la provincia romana de Dacia, actual Rumanía, Limes Porolissensis fue una línea defensiva organizada en el siglo II d.C. después de la conquista de Dacia, que tenía torres de observación, fortificaciones de muros de atajo, integrando la siguiente castra:

Porolissum

Porolissum fue un importante centro militar de la Dacia romana, en el centro de las llamadas limas Porolissensis. Inicialmente creado como campamento militar en 106 al final de la conquista de Dacia, operado por Trajano en los años 101-106. La siguiente ciudad, que creció rápidamente alrededor del castrum y el canabae, estaba en el centro del comercio con las poblaciones nativas y aún libres de los dacios, al noroeste de la provincia romana. Se convirtió en la capital provincial de Dacia Porolissensis alrededor de 124 bajo el emperador Adriano. Más tarde se convirtió en municipio bajo Septimio Severo. Probablemente fue abandonado bajo el principado de Galieno después de 256. El sitio arqueológico es actualmente uno de los más importantes y mejor conservados de Rumanía, y está ubicado en el pueblo de Moigrad, una aldea de Mirșid en el distrito de Sălaj.

Porolissum

Puerta Porolissum

La puerta pretoriana reconstruida (Porta Praetoria)

Como ejemplo se incluyen datos de uno de estos Castrum.

Castrul Roman Buciumi

Fundado: Siglo II d.C. [1]

 

Abandonado: Siglo III d.C. [1]

Lugar en el mundo romano

Provincia: Dacia

Unidad administrativa: Dacia Porolissensis

Unidad administrativa: Dacia Superior

Limas: Porolissensis

Directamente conectado a: Largiana y Optatiana

Estructura

Estructura de piedra

Tamaño y área: 134 m × 167 m (2,2 [2] ha )

 

Estructura de madera y tierra

Tamaño y área: 125 m × 160 m (2,0 [2] ha )

Unidades militares estacionadas

Cohortes: I Augusta Ituraeorum [2] y II Augusta Brittonum [2]

Localización

Coordenadas: 47.048292 ° N 23.044678 ° E:

Altitud: 373 metros

Lugar: Grădiște

Pueblo: Buciumi

Condado: Sălaj

País: Rumania

Historia

En 106, al comienzo de su segunda guerra contra los dacios, Emperador Trajano estableció un bastión militar en el sitio para defender el pasaje principal a través del Montañas de los Cárpatos. El fuerte, inicialmente construido de madera sobre cimientos de piedra, fue guarnecido con 5000 tropas auxiliares transferidas desde España, Galia y Bretaña. Aunque el nombre Porolissum parece ser de origen dacio, arqueólogos hasta ahora no han descubierto evidencia de un asentamiento dacio anterior al fuerte romano.

En las décadas siguientes, el fuerte fue ampliado y reconstruido en piedra (posiblemente bajo el reinado de Marco Aurelio), y un canaba, un asentamiento civil desarrollado alrededor del centro militar. Cuando Adriano creó la nueva provincia Dacia Porolissensis (llamada así por la ahora considerable ciudad) en 124, Porolissum se convirtió en el centro administrativo de la provincia. Bajo el emperador Septimio Severo, la ciudad fue concedida municipium estado, permitiendo a sus líderes y comerciantes actuar de forma independiente. Aunque los romanos se retiraron de Dacia ca. 271 bajo Aureliano, Porolissum puede haber sido abandonado gradualmente en el transcurso de los años 260.

A pesar de que la ciudad fue fundada como un centro militar en medio de una guerra, la guarnición de Porolissum parece haber vivido en una coexistencia pacífica con sus vecinos dacios: varios pueblos dacios que aparentemente se fundaron después de que la ciudad de Porolissum hayan sido descubiertos por arqueólogos. en las colinas circundantes. También hay algunas inscripciones que mencionan a los funcionarios de la ciudad con nombres romano-dacios, lo que indica una estrecha cooperación a nivel político.

El trabajo arqueológico limitado en Porolissum comenzó en el siglo XIX, pero no fue hasta 1977 cuando los arqueólogos rumanos comenzaron excavaciones sistemáticas a mayor escala. Las excavaciones realizadas por varios equipos están en curso y han descubierto restos tanto de las instalaciones militares como de la ciudad civil, incluidos los baños públicos, una aduana, un templo a Liber Pater, un anfiteatro, ínsula Consta de cuatro edificios y varias viviendas. Se ha reconstruido la puerta principal (Porta Praetoria) de la fortaleza de piedra. Un equipo conjunto estadounidense-rumano, el Porolissum Forum Project, excavó un área del asentamiento civil entre 2004 y 2011; A pesar del nombre del proyecto, el equipo confirmó que si bien esta área cumplía una función pública, no era necesariamente un foro.

Desde 2006 hasta 2011, otro proyecto, “Necrópolis Porolissensis”, se centró en el cementerio de la municipium Porolissum, en el lugar conocido como “Ursoies”. De 2008 a 2011, un equipo rumano-alemán-húngaro estaba excavando un edificio subterráneo en el centro del castillo, probablemente una cisterna de agua.

En 2015, arqueólogos de Museo del condado de Zalău desenterró un sarcófago de piedra que contenía restos óseos de un joven. El sarcófago es inusual porque no se encontró en el cementerio, sino que fue descubierto por casualidad durante la restauración de otra parte de las ruinas. La tapa de piedra caliza tiene tallados que eran comunes en la época romana, y tiene un agujero que sugiere que la tumba fue robada en la antigüedad.

El santuario de Porolissum fue construido a finales del siglo II o principios del siglo II d.C. Probablemente fue un lugar de culto de otras deidades, vinculadas de una forma u otra a las actividades anfiteatros, especialmente a las peleas de animales (venatio), como Liber Pater, dios de la vegetación y la vid, o Silvanus, dios protector de los bosques, pastos y animales salvajes.

El anfiteatro fue construido como una estructura de madera durante el reinado de Adriano. Posteriormente, en el 157 d.C., fue reconstruida en piedra.

Mapa de la actual Rumania, donde se sitúa casi toda la Dacia romana.

Ubicación de los más importantes Castrum, en la antigua Dacia romana.

Mapamundi de Al-Masudi

Mapamundi de Al-Masudi

Al-Masudi

Nombre en árabe: المسعودي

Nacimiento: c. 896; Bagdad (califato abasí)

Fallecimiento: Septiembre de 956; El Cairo (Egipto)

Religión: Islam

Educación

Alumno de: Niftawayh

Ocupación: Geógrafo, historiador y escritor

Área: Historia

Abu ul-Hasan ‘Ali ibn al-Husayn ibn ‘Ali al-Masʿūdī (en árabe, أَبُو ٱلْحَسَن عَلِيّ ٱبْن ٱلْحُسَيْن ٱبْن عَلِيّ ٱلْمَسْعُودِيّ‎, Bagdad, 896Fustat, 956) fue un historiador y geógrafo, conocido como el «Heródoto de los árabes».1​ Fue uno de los primeros en reunir las disciplinas de la historia y de la geografía científica en una obra de gran alcance, su Murūj adh-dhahab wa-maʿādin al-jauhar que en su momento era una historia del mundo conocido. Escribió Las praderas de oro y Libro de advertencia y revisión, crónicas que reflejan las inquietudes de su época.

Biografía

El atlas del mundo de Al-Mas’udi (invertido en el eje norte-sur) también incluye un continente al oeste del Viejo Mundo.

Debido a la escasez de las fuentes, es poco lo que se sabe sobre la vida de al-Masʿūdī. A pesar de la gran producción escrita, su figura fue completamente ignorada por la mayoría de los biógrafos contemporáneos a su época. Incluso en Kitāb al-Fihrist de Ibn an-Nadīm, uno de los diccionarios más completos de la cultura letrada árabe, la información sobre al-Masʿūdī se reduce a una serie de breves menciones.2​ Debido a lo anterior, la única manera de arrojar la luz sobre la vida de al-Masʿūdī, es a través de sus propias obras.

La fecha exacta de nacimiento de Al-Masʿūdī se desconoce, pero la mayoría de los investigadores la sitúan entre 893 y 896 (279-283 AH). Era originario de Bagdad, la capital del Califato abbasí. Su nisba podría indicar la descendencia de ʿAbdallāh ibn Masʿūd, uno de los primeros conversos musulmanes y también uno de los compañeros más cercanos de Mahoma. La juventud del futuro viajero pasó en su ciudad natal. A pesar de no contar con evidencias directas, Charles Pellat a partir de sus obras deduce que durante la etapa formativa al-Masʿūdī tuvo la oportunidad de asistir a clases impartidas por varios maestros importantes de la época como Wakīʿ (m. 306/918), al-Faḍl b. al-Ḥubāb (m. 305/917) y Abū ʿAlī al-Djubbaʾī. Durante esta etapa también pudo haber conocido a aṭ-Ṭabarī (m. 310/923), Ibn Durayd (m. 321/934), al-Ashʿarī (d. 324/935), entre otros.2

En el período entre 912 y 915 al-Masʿūdī abandona Bagdad para emprender un largo viaje. Según so obra Murūj adh-dhahab en 915 visitó una serie de ciudades de Persia, de donde se dirigió a la India, atravesando Sind. De allí, posiblemente recorrió Ceilán y una parte de China. Esta etapa del viaje de al-Masʿūdī que corresponde a los territorios fuera del mundo islámico ha generado muchas dudas entre la comunidad académica.3​ Su veracidad ha sido cuestionada, ya que no se cuenta con las evidencias contundentes de su estancia en Asia Oriental, mientras que sus descripciones de dicha región están basadas en otras fuentes. Por ejemplo, según Paul Lunde y Caroline Stone, una gran parte fue tomada de Ak̲h̲bār al-Ṣīn wa’l-Hind de Abū Zayd al-Sīrāfī, a quién al-Masʿūdī encontró durante su recorrido.4​ En cualquiera de los casos, en 917 después de pasar por Yemen y Omán, regresó a Irak. Después de pasar cuatro años en su tierra natal, en 921 al-Masʿūdī emprendió un nuevo viaje a Siria. Cinco años más tarde, encontramos nuevamente al viajero visitando Jerusalén, Nazareth, entre otras ciudades de Palestina. En 927 hay un nuevo registro de su presencia en Damasco, Raqqa y Harran.

La última etapa de sus andanzas fue marcada por el paso por Armenia y la orilla del mar Caspio. Al final de su viaje al-Masʿūdī se establece en Fustat, la capital de la Dinastía ijshidí que de iure se encontraba bajo la soberanía de los Califas de Bagdad, pero de facto representaba una entidad política autónoma. Tras su llegada a Fustat, al-Masʿūdī ya no volverá a Bagdad, sumergida en los disturbios relacionados con el debilitamiento del poder central abbasí y el ascenso de los Búyidas. Precisamente en Fustat al-Masʿūdī completó una gran parte de sus trabajos, incluyendo las únicas dos obras que llegaron hasta nosotros y continuó trabajando hasta su muerte en 956.

Obra

al-Masʿūdī fue reconocido por su contribución al género de la geografía histórica. De los 36 tratados conocidos hasta nuestros días llegaron solo dos: Kitāb at-Tanbīh wa-’l-ishrāf (Libro de advertencia y revisión) y Murūj adh-dhahab wa-maʿādin al-jauhar (Los prados de oro y las minas de gemas). Su opus magna de treinta volúmenes intitulada Aḵbār az-zamān (Noticias/historia del tiempo) se ha perdido, igual que su apéndice al-Kitāb al-awsaṭ (El libro medio). El resumen abreviado de Aḵbār az-zamān con el que contamos en la actualidad se ha conservado bajo el título Murūj adh-dhahab wa-maʿādin al-ǧauhar (Los prados de oro y las minas de gemas). La segunda obra que llegó hasta la actualidad, Kitāb at-Tanbīh wa-’l-ishrāf,5​ fue escrita poco tiempo antes de la muerte de al-Masʿūdī y contiene correcciones y aclaraciones de sus libros previos.6

Los prados de oro y las minas de gemas (Murūj adh-dhahab wa-maʿādin al-jauhar)

El estudio sistemático de Murūj adh-dhahab fue inaugurado en el siglo XIX por Silvestre de Sacy y retomado por especialistas como Ernest Renan. Entre 1861 y 1877 Barbier de Meynard y Pavet de Courteille elaboraron la primera traducción del texto completo al francés, lo que dio un impulso a su estudio. Murūǧ aḏ-ḏahab obtuvo una alta valoración entre la comunidad académica. Uno de los mayores expertos del siglo XX en literatura árabe, H.A.R Gibb: “no hay trabajo más maravilloso escrito en árabe.”6

El libro consta de dos partes. La primera reúne la descripción de las partes conocidas del mundo con la clásica división en siente climas con constantes digresiones de carácter proto-antropológico, propios para la literatura geográfica descriptiva árabe. La segunda parte ocupa aproximadamente dos tercios de la totalidad de la obra y está dedicada específicamente a la historia árabe-musulmana desde Mahoma hasta el reinado del Califa abbasí Abū ʾl-Qāsim al-Faḍl ibn al-Muqtadir (m. 974).7​ En este sentido, Murūǧ aḏ-ḏahab es uno de los trabajos más ilustrativos de la vida cultural y política del Califato abbasí.

Contribución

En las descripciones geográficas, la metodología de al-Masʿūdī no se compara con la rigurosidad “científica” de autores como al-Bīrūnī. Sobre todo era un literato, un adīb, lo que lo acerca a autores como al-Jāḥiẓ o ibn al-Faqih, pero con un sesgo más serio y el estilo narrativo más disciplinado.

El legado de al-Masʿūdī enriqueció el género de la literatura geográfica descriptiva. Su imparcialidad en cuestiones étnicas y religiosas, su erudición y el alcance de sus intereses lo convierten en un autor de suma importancia tanto para el estudio de los asuntos internos del Califato, como para el análisis de la visión que tenía un representante de esta cultura del mundo circundante.

Nacimiento, viajes y producción literaria

Más información: Los prados de oro

Poco se sabe de sus medios y financiación de sus extensos viajes dentro y más allá de las tierras del Islam, y se ha especulado que, como muchos viajeros, pudo haber estado involucrado en el comercio.[6]

Hacia el final de Los prados de oro, al-Mas’udi escribió:

La información que hemos recopilado aquí es el fruto de largos años de investigación y dolorosos esfuerzos de nuestros viajes y jornadas por Oriente y Occidente, y de las diversas naciones que se encuentran más allá de las regiones del Islam. El autor de esta obra se compara a un hombre que, habiendo encontrado perlas de todo tipo y color, las junta en un collar y las convierte en un adorno que su poseedor guarda con gran esmero. Mi objetivo ha sido rastrear las tierras y las historias de muchos pueblos, y no tengo otro.[7]

Entorno intelectual de al-Mas’udi

Al-Mas’udi vivió en una época en que los libros estaban disponibles y eran baratos. Ciudades importantes como Bagdad tenían grandes bibliotecas públicas y muchas personas, como as-Suli, un amigo de Mas’udi, tenían bibliotecas privadas, que a menudo contenían miles de volúmenes. A principios de la era abasí, los prisioneros chinos llevaron el arte de la fabricación de papel al mundo islámico después de la batalla de Talas y la mayoría de los pueblos y ciudades grandes tenían fábricas de papel. El material de escritura barato disponible contribuyó a la animada vida intelectual.[9] Al-Mas’udi a menudo remite a los lectores a sus otros libros, suponiendo que estén disponibles. La alta alfabetización y el vigor del mundo islámico con su rica herencia cultural de filosofía griega, literatura persa, matemáticas indias, contrastaba con la de Europa, cuando el autor de la Crónica anglosajona estaba escribiendo. Estaba familiarizado con la obra médica de Galeno, con la astronomía ptolemaica, con la obra geográfica de Marino y con los estudios de los geógrafos y astrónomos islámicos.

En Los prados de oro, al-Mas’udi escribió su famosa condena de la revelación sobre la razón:

Las ciencias fueron apoyadas financieramente, honradas en todas partes, universalmente perseguidas; eran como edificios altos sostenidos por fuertes cimientos. Entonces apareció la religión cristiana en Bizancio y los centros de aprendizaje fueron eliminados, sus vestigios borrados y el edificio del saber griego fue destruido. Todo lo que los antiguos griegos habían sacado a la luz se desvaneció, y los descubrimientos de los antiguos se alteraron hasta quedar irreconocibles.

Al-Mas’udi incluyó la historia de las antiguas civilizaciones que habían ocupado la tierra sobre la que más tarde se extendió el Islam. Menciona a los asirios, babilonios, egipcios y persas entre otros. También es el único historiador árabe que se refiere (aunque indirectamente) al reino de Urartu, cuando habla de las guerras entre los asirios (dirigidos por la legendaria reina Semíramis) y los armenios (dirigidos por Ara la Hermosa).[12]

Al-Mas’udi estaba al tanto de la influencia de la antigua Babilonia en Persia. Tuvo acceso a una gran cantidad de traducciones de eruditos como ibn al-Muqaffa del persa medio al árabe. En sus viajes, también consultó personalmente a eruditos persas y sacerdotes zoroastrianos . Así tuvo acceso a mucho material, fáctico y mítico. Al igual que otros historiadores árabes, no tenía claro la dinastía aqueménida, aunque sabía de Kurush (Ciro el Grande). Fue mucho más claro sobre las dinastías más recientes y su estimación del tiempo entre Alejandro Magno y Ardashir se describe con mucha más precisión que en al-Tabari.

Sus amplios intereses incluían a los griegos y los romanos. Una vez más, al igual que otros historiadores árabes, no tenía claro la Grecia anterior a la dinastía macedonia que produjo a Alejandro Magno. Él es consciente de que hubo reyes antes de esto, pero no tiene claro sus nombres y reinados. Tampoco parece estar familiarizado con aspectos adicionales de la vida política griega como las instituciones democráticas atenienses. Lo mismo vale para la Roma anterior a César . Sin embargo, es el primer autor árabe existente que menciona el mito fundador romano de Rómulo y Remo.

En opinión de al-Mas’udi, la mayor contribución de los griegos fue la filosofía. Era consciente de la progresión de la filosofía griega desde los presocráticos en adelante.

También estaba muy interesado en los acontecimientos anteriores de la península arábiga. Reconoció que Arabia tenía una larga y rica historia. También era muy consciente de la mezcla de hechos interesantes en tiempos preislámicos, en mitos y detalles controvertidos de tribus competidoras e incluso se refirió a la similitud entre parte de este material y las contribuciones legendarias y narrativas de algunos persas medios e indios, libros a las Mil y Una Noches.[cita requerida]

Viajes en tierras más allá del Islam

En el año 933 Al-Masudi menciona a los marineros musulmanes, que llaman a las islas Comores: “Las Islas del Perfume” y cantan las olas que rompen rítmicamente a lo largo de amplias playas de arena perlada, las brisas ligeras perfumadas con vainilla e ylang-ylang, un componente en muchos perfumes.[13]

Ahmad Shboul señala que al-Mas’udi se distingue de sus contemporáneos por el alcance de su interés y la cobertura de las tierras y pueblos no islámicos de su época. Otros autores, incluso los cristianos que escribieron en árabe en el califato, tenían menos que decir sobre el Imperio bizantino que al-Mas’udi. También describió la geografía de muchas tierras más allá del califato abasí, así como las costumbres y creencias religiosas de muchos pueblos.[cita requerida]

Sus habituales consultas a los viajeros y la extensa lectura de escritores anteriores se complementaron en el caso de la India con sus experiencias personales en la parte occidental del subcontinente. Demuestra una comprensión profunda del cambio histórico, rastreando las condiciones actuales hasta el desarrollo de eventos a lo largo de generaciones y siglos. Percibió la importancia de las relaciones interestatales y de la interacción de musulmanes e hindúes en los diversos estados del subcontinente.[cita requerida]

Describió a los gobernantes anteriores en China, subrayó la importancia de la revuelta de Huang Chao a finales de la dinastía Tang y mencionó, aunque menos detalladamente que para la India, las creencias chinas. Su breve retrato del sudeste asiático destaca por su grado de precisión y claridad. Inspeccionó las vastas áreas habitadas por pueblos túrquicos, comentando lo que había sido la amplia autoridad de Khaqan, aunque este ya no era el caso en la época de al-Mas’udi. Transmitió la gran diversidad de pueblos túrquicos, incluida la distinción entre turcos sedentarios y nómadas. Habló de la importancia de los jázaros y proporcionó mucho material nuevo sobre ellos.[cita necesaria]

Su relato de la Rus es una importante fuente temprana para el estudio de la historia rusa y la historia de Ucrania. Nuevamente, si bien puede haber leído a autores árabes anteriores como Ibn Khordadbeh, Ibn al-Faqih, ibn Rustah e Ibn Fadlan, al-Mas’udi presentó la mayor parte de su material basado en sus observaciones personales y contactos realizados durante el viaje. Informó al lector árabe que los rus eran más que unos pocos comerciantes. Eran una colección diversa y variada de pueblos. Señaló su actitud independiente, la ausencia de una autoridad central fuerte entre ellos y su paganismo. Estaba muy bien informado sobre el comercio de la Rus con los bizantinos y sobre la competencia de la Rus en la navegación de buques mercantes y buques de guerra. Era consciente de que el Mar Negro y el Mar Caspio son dos cuerpos de agua separados.[cita requerida]

Al-Mas’udi también estaba muy bien informado sobre los asuntos bizantinos, incluso sobre los acontecimientos políticos internos y el desarrollo de los golpes palaciegos. Él registró el efecto de la migración hacia el oeste de varias tribus sobre los bizantinos, especialmente los búlgaros invasores. Habló de las relaciones bizantinas con Europa occidental. Y, por supuesto, estaba muy interesado en las relaciones bizantino-islámicas.[cita requerida]

Un ejemplo de la influencia de Al-Mas’udi en el conocimiento musulmán del mundo bizantino es que el uso del nombre Estambul (en lugar de Constantinopla) se remonta a sus escritos durante el año 947, siglos antes del eventual uso otomano de este término. Escribe que los griegos (es decir, los bizantinos del siglo X) la llaman “la Ciudad” (bulin en la escritura árabe, que carece de la letra p: en griego polin); “y cuando quieren expresar que es la capital del Imperio por su grandeza dicen Istan Bulin. No la llaman Constantinopla. Son sólo los árabes quienes la designan así”.[14] Una analogía actual sería el uso de las frases “Voy al centro de la ciudad” o “Voy a la ciudad” por parte de quienes viven cerca de Chicago o Londres, respectivamente.[cita requerida]

Tiene algún conocimiento de otros pueblos del este y oeste de Europa, incluso de la lejana Gran Bretaña y la Inglaterra anglosajona. Lo nombra, aunque es incompleto al respecto. Conoce París como la capital de los francos. Obtuvo una copia de una lista de gobernantes francos desde Clodoveo hasta su época.[cita requerida] Hace varias referencias a personajes interpretados como vikingos, descritos por él como majus, que llegaron a Al-Andalus desde el norte.[15]

El interés global de Al-Mas’udi incluía África. Era muy consciente de los pueblos de la parte oriental del continente (mencionando detalles interesantes de los Zanj, por ejemplo). Conoce menos África occidental, aunque nombra estados contemporáneos como Zagawa, Kawkaw y Ghana. Describió las relaciones de los estados africanos entre sí y con el Islam. Proporcionó material sobre las culturas y creencias de los africanos no islámicos.[cita requerida]

En general, sus obras sobrevivientes revelan una mente intensamente curiosa, un universalista que adquiere ansiosamente un trasfondo tan extenso del mundo entero como sea posible. La variedad geográfica de su material y el alcance de su espíritu siempre inquisitivo es verdaderamente impresionante.[cita requerida]

Recepción

Ernest Renan comparó a al-Masudi con el geógrafo griego Pausanias del siglo II d. C., mientras que otros lo compararon con el escritor romano Plinio el Viejo . Incluso antes de que el trabajo de al-Masudi estuviera disponible en idiomas europeos, los orientalistas [cita requerida] lo compararon con Heródoto, el antiguo historiador griego llamado “El padre de la historia”.

Influencias religiosas

Algunos de los primeros comentaristas de al-Masudi indican la influencia de los antagonismos religiosos. El erudito sunita Ibn Hajar escribió: “Los libros [de al-Mas’udi] son ​​imprecisos porque era un chiíta, un muʿtazili“.[17] Adh-Dhahabi[18] y Taj al-Din al-Subki creían que él defendía la doctrina herética de Mu’tazili.[19] Las indicaciones de la teología chiita se citan a continuación:

Su descripción de Sistán (Irán)

“… es la tierra de los vientos y la arena. Allí el viento mueve los molinos y hace subir el agua de los arroyos, con lo cual se riegan los jardines. No hay en el mundo, y sólo Dios lo sabe, ningún lugar donde se haga un uso más frecuente de los vientos”. (947 dC)[21]

Telescopio espacial James Webb

Telescopio espacial James Webb

Telescopio espacial James Webb

 

Estado: En órbita

Operador: CSA, NASA,1ESA

Coste: 10 000 000 000 dólares estadounidenses2

ID COSPAR: 2021-130A

  1. SATCAT: 50463

ID NSSDCA: 2021-130A

Página web:

[CSA/ASC Canadá

NASA Estados Unidos

ESA b Europa

CNES Francia enlace]

 

Duración planificada: 5-10 años

Duración de la misión: 168 días y 7 horas

Propiedades de la nave

Fabricante: Northrop Grumman Ball Aerospace

Masa de lanzamiento: 6200 kg

Comienzo de la misión

Lanzamiento: 25 de diciembre de 2021 (12:20 UTC)

Vehículo: Ariane 5

Lugar: Puerto espacial de Kourou, Guayana Francesa

Contratista: Arianespace

Parámetros orbitales

Sistema de referencia: 1,5 millones de km de la Tierra (Tierra-Sol punto L2 órbita de halo)

Insignia de la misión Telescopio espacial James Webb

El telescopio espacial James Webb (en inglés, James Webb Space Telescope (JWST)) es un observatorio espacial desarrollado a través de la colaboración de veinte países,3​ construido y operado conjuntamente por la NASA, la Agencia Espacial Europea y la Agencia Espacial Canadiense, para sustituir los telescopios Hubble y Spitzer.45​ El JWST ofrecerá una resolución y sensibilidad sin precedentes, y permitirá una amplia gama de investigaciones en los campos de la astronomía y la cosmología.6​ Uno de sus principales objetivos es observar algunos de los eventos y objetos más distantes del universo, como la formación de las primeras galaxias. Este tipo de objetivos están fuera del alcance de los instrumentos terrestres y espaciales actuales. Entre sus objetivos están incluidos estudiar la formación de estrellas y planetas y obtener imágenes directas de exoplanetas y novas.

Entre sus principales características técnicas hay que destacar el espejo primario de JWST, compuesto por 18 segmentos hexagonales que, combinados, crean un espejo con un diámetro de 6,5 metros (21 pies 4 pulgadas), un gran aumento con diferencia sobre el espejo utilizado por el Hubble, de 2,4 metros (7,9 pies), el parasol y cuatro instrumentos científicos. El telescopio se sitúa en el espacio cerca del punto lagrangiano Tierra-Sol L2,7​ está protegido por un gran parasol, hecho de cinco hojas de Kapton revestido de aluminio y silicio, que mantendrá al espejo y sus cuatro instrumentos científicos principales a temperaturas cercanas al cero absoluto. A diferencia del Hubble, que observa en los espectros ultravioleta cercano, visible e infrarrojo cercano, el JWST observará en la luz visible de longitud de onda larga (naranja a rojo) a través del rango del infrarrojo medio (0,6 a 27 μm). Esto permitirá que el JWST realice una amplia gama de investigaciones a través de muchos subcampos de la astronomía,8​ que observe y estudie las primeras estrellas, de la época de reionización, formación de las primeras galaxias, tome fotografías de nubes moleculares, grupos de formación estelar, objetos con alto desplazamiento hacia el rojo demasiado viejos y demasiado distantes para que pudieran ser observados por el Hubble y otros telescopios anteriores.9

En desarrollo desde 1996,10​ lo denominaron inicialmente como Next Generation Space Telescope o NGST, en 2002 fue denominado James E. Webb, en honor al funcionario del gobierno estadounidense que fue administrador de la NASA entre 1961 y 1968 y jugó un papel integral en el programa Apolo.1112​ El proyecto ha tenido numerosas demoras y gastos excesivos, siendo sometido a importante rediseño durante 2005. En 2011, parte del Congreso de los Estados Unidos optó por su cancelación, después de haber empleado en su desarrollo aproximadamente 3000 millones de dólares13​ estando en producción o en fase de pruebas más del 75% de su hardware.14​ En noviembre de 2011, el Congreso revocó los planes para cancelar el proyecto y en su lugar puso un tope de financiación adicional para completar el proyecto en 8000 millones de dólares.15​ En diciembre de 2016, la NASA anunció que la construcción del JWST había finalizado y comenzaría su fase de pruebas.1617​ En marzo de 2018, la NASA retrasó el lanzamiento de JWST un año más porque el parasol del telescopio se rasgó durante un despliegue de práctica y los cables del parasol no se apretaron lo suficiente.18​ Estaba previsto que el JWST fuera a ser lanzado en mayo de 20201920212223​ desde la Guayana Francesa.24

El 27 de junio de 2018, tras detectarse varios problemas, tanto técnicos como humanos, durante las pruebas, la NASA decide posponer el lanzamiento del telescopio al 30 de marzo de 2021, después de que la junta de revisión que evalúa el proyecto emitiera un informe contrario a las expectativas respecto al cronograma previsto por el contratista y el proceso de la misión en general incluyendo los errores.2526272829303132

El 10 de junio de 2020, Thomas Zurbuchen, Administrador Asociado de la Dirección de Misiones Científicas de la NASA, anunció que el lanzamiento del telescopio James Webb se retrasaría, y no podría salir el 10 de marzo de 2021, como estaba estipulado. Este retraso fue inevitable debido a la pandemia de COVID-19, la cual hizo que el trabajo en la nave se viera disminuido.33

Tras superar la prueba final de vacío térmico, el JWST demuestra que funcionará en el espacio. 3435

  • El telescopio James Webb fue lanzado con éxito, el 25 de diciembre de 2021, a bordo de un cohete

Descripción

El JWST es un proyecto conjunto de la NASA, la Agencia Espacial Europea y la Agencia Espacial Canadiense, donde colaboran aproximadamente 17 países más.

Las contribuciones de Europa se formalizaron en 2007 con un Memorando de Entendimiento ESA-NASA, que incluye el lanzador Ariane-5 ECA, el instrumento NIRSpec, el montaje del banco óptico MIRI, y soporte de personal para las operaciones.39

El telescopio se espera que tenga una masa de aproximadamente la mitad del telescopio espacial Hubble, aunque su espejo primario (un reflector de berilio recubierto de oro de 6,5 metros de diámetro) tendrá un área de recolección aproximadamente cinco veces mayor (25 m² o 270 pies cuadrados vs. 4,5 m² o 48 pies cuadrados). El JWST está orientado hacia la astronomía cercana al infrarrojo, pero también puede ver la luz visible naranja y roja, así como también la región del infrarrojo medio, dependiendo del instrumento. El diseño enfatiza el infrarrojo cercano al medio por tres motivos principales: los objetos con alto desplazamiento hacia el rojo tienen sus emisiones visibles desplazadas al infrarrojo, los objetos fríos como los discos de escombros y los planetas emiten más fuertemente en el infrarrojo, y esta banda es difícil de estudiar desde el suelo o por los telescopios espaciales actuales como el Hubble. Los telescopios terrestres tienen que observar atravesando la atmósfera, que es opaca en muchas bandas infrarrojas. Incluso donde la atmósfera es transparente, muchos de los compuestos químicos que son objetivo, como el agua, el dióxido de carbono y el metano, también existen en la atmósfera terrestre, lo que complica enormemente el análisis. Los telescopios espaciales actuales como el Hubble no pueden estudiar estas bandas ya que sus espejos no son lo suficientemente fríos (el espejo del Hubble se mantiene a unos 15 °C) y, por lo tanto, el telescopio irradia con fuerza en las bandas IR.

El JWST operará cerca del punto de Lagrange Tierra-Sol L2, aproximadamente a 1500 000 km (930 000 millas) más allá de la órbita de la Tierra. A modo de comparación, el Hubble orbita a 340 millas (550 km) sobre la superficie de la Tierra, y la Luna está aproximadamente a 400 000 km (250 000 millas) de la Tierra. Esta distancia hace que la reparación o actualización posterior al lanzamiento del hardware del JWST sea prácticamente imposible. Los objetos cercanos a este punto pueden orbitar el Sol en sincronía con la Tierra, lo que permite que el telescopio permanezca a una distancia aproximadamente constante40​ y tiene obligado utilizar una barrera solar para bloquear el calor y la luz del Sol y la Tierra. Esto mantendrá la temperatura de la nave espacial por debajo de 50 K (-220 °C; -370 °F), necesaria para las observaciones de infrarrojos.4142

Vista de tres cuartos de la parte superior

Parte inferior (lado orientado al sol)

Barrera solar

Probando el despliegue del parasol en el hangar de pruebas en la instalación Northrop Grumman en California, año 2014

Para realizar observaciones en el espectro infrarrojo, el JWST debe mantenerse a una temperatura muy baja, aproximadamente por debajo de 50 K (-220 °C; -370 °F), de lo contrario, la radiación infrarroja del propio telescopio podría bloquear o sobrecargar sus instrumentos. Para evitarlo utiliza un gran parasol que bloquea la luz y el calor del Sol, la Tierra y la Luna, además, su posición cercana al punto de Lagrange Tierra-Sol L2 mantiene los tres cuerpos en el mismo lado de la nave espacial en todo momento.43​ Su órbita halo alrededor del punto L2 evita la sombra de la Tierra y la Luna, manteniendo una posición constante y aceptable para la barrera solar y los paneles solares.40​ El parasol está hecho de película de poliimida y tiene membranas recubiertas con aluminio en un lado y silicio en el otro.

El parasol está diseñado para doblarse doce veces, por lo que cabe dentro de la cubierta del cohete Ariane 5 de 4,57 m (5 yardas) × 16,19 m (17,7 yardas). Una vez ubicado el telescopio en el punto L2, el parasol se desplegará a 21,197 m (23,18 yardas) × 14,162 m (15,55 yardas). El parasol fue ensamblado a mano en Man Tech (NeXolve) en Huntsville, Alabama, antes de ser entregado a Northrop Grumman en Redondo Beach, California, Estados Unidos, para su prueba.44

Óptica

Ensamblado del espejo principal en el Centro de vuelo espacial Goddard, mayo de 2016

Modelo NIRCam

El espejo primario de JWST es un reflector de berilio de 6,5 metros de diámetro, recubierto de oro, con un área de recolección de 25 m². Estas dimensiones son demasiado grandes para los vehículos de lanzamiento actuales, por lo que al espejo lo componen 18 segmentos hexagonales, que se desplegarán después una vez que se haya abierto el telescopio. La detección del frente de onda plano de la imagen a través de la recuperación de fase se usará para colocar los segmentos del espejo en la ubicación correcta usando micromotores muy precisos. Con posterioridad a esta configuración inicial, solo necesitarán breves encendidos cada pocos días para mantener un enfoque óptimo,45​ siendo distinto a los telescopios terrestres como el Observatorio W. M. Keck, que continuamente ajustan los segmentos de su espejo utilizando ópticas activas para superar los efectos de la carga gravitacional y del viento, y es posible debido a la falta de perturbaciones ambientales por estar ubicado en el espacio.

El diseño óptico de JWST es un telescopio de tres espejos anastigmático,46​ que hace uso de espejos curvos secundarios y terciarios para obtener imágenes libres de aberraciones ópticas en un amplio campo. Además, hay un espejo de dirección rápido, que puede ajustar su posición muchas veces por segundo para proporcionar estabilización de imagen.

Ball Aerospace & Technologies es el principal subcontratista para el proyecto JWST, dirigido por el contratista principal Northrop Grumman Aerospace Systems, siendo dirigidos todos por el Centro Goddard de Vuelos Espaciales de la NASA, en Greenbelt, Maryland.4748​ Dieciocho segmentos de espejos primarios, espejos de dirección secundarios, terciarios y sensibles, más repuestos de vuelo han sido fabricados y pulidos por Ball Aerospace en segmentos de berilio fabricados por varias empresas, entre ellas Axsys, Brush Wellman y Tinsley Laboratories.

Modelo NIRSpec

El último segmento del espejo primario fue instalado el 3 de febrero de 2016,49​ y el espejo secundario fue instalado el 3 de marzo de 2016.50

Instrumentos científicos

El Integrated Science Instrument Module (ISIM) es un módulo que proporciona energía eléctrica, recursos informáticos, refrigeración y estabilidad estructural para el telescopio. Está fabricado con un compuesto de grafito-epoxi y va unido a la parte inferior de la estructura del telescopio. En el ISIM se integran cuatro instrumentos51​ científicos que se describen a continuación y una cámara guía.52

Modelo MIRI a escala 1:3

  • Near InfraRed Camera (NIRCam), cámara infrarroja con cobertura espectral que irá desde el borde de lo visible (0,6 micrómetros) hasta el infrarrojo cercano (5 micrómetros).5354​ También servirá como sensor de frente de onda del observatorio, necesario para actividades de detección y control de frente de onda. Construida por un equipo dirigido por la Universidad de Arizona, siendo Investigadora Principal Marcia Rieke. El socio principal es Lockheed Martin Advanced Technology Center, ubicado en Palo Alto, California.55
  • Mid-InfraRed Instrument (MIRI), instrumento que medirá el rango de longitud de onda del infrarrojo medio de 5 a 27 micrómetros.5758​ Compuesto por cámara de infrarrojo medio y un espectrómetro de imágenes.47​ Fue desarrollado en colaboración entre la NASA y un consorcio de países europeos, está dirigido por George H. Rieke (Universidad de Arizona) y Gillian Wright (UK Astronomy Technology Centre, Edimburgo, miembro del Science and Technology Facilities Council (STFC)).55​ MIRI presenta mecanismos de rueda similares a NIRSpec, que también han sido desarrollados y construidos por Carl Zeiss Optronics GmbH (subcontratada a su vez por Max Planck Institute for Astronomy. El instrumento una vez construido se entregó al Centro de vuelo espacial Goddard a mediados de 2012 para su eventual integración en el ISIM. La temperatura del MIRI no debe superar los 6 Kelvin (K): un enfriador mecánico de gas de helio ubicado en el lado cálido del escudo ambiental conseguirá reducirlo a tan baja temperatura.59
  • Fine Guidance Sensor and Near Infrared Imager and Slitless Spectrograph (FGS/NIRISS), estabilizador fabricado por la Agencia Espacial Canadiense bajo la supervisión del científico John Hutchings (Herzberg Institute of Astrophysics, National Research Council (Canadá)), estabilizará la línea de visión del observatorio durante las observaciones científicas. Las mediciones del FGS se usan tanto para controlar la orientación general de la nave espacial como para conducir el espejo de dirección para estabilizar la imagen. La Agencia Espacial Canadiense también proporcionará un instrumento que observará el infrarrojo cercano y espectrógrafo Slitless (NIRISS) para imágenes astronómicas y espectroscopía en el rango de longitud de onda de 0,8 a 5 micrómetros, cuya dirección la supervisa el investigador principal René Doyon de la Universidad de Montreal.55​ Debido a que el NIRISS está físicamente montado junto con el FGS, a menudo se les reconoce como una sola unidad, pero sus análisis son completamente distintos, uno es un instrumento científico y el otro forma parte de la infraestructura de soporte del observatorio.

NIRCam y MIRI tienen coronógrafos bloqueadores de luz estelar para poder observar objetivos débiles como planetas extrasolares y discos circunestelares cercanos a estrellas brillantes.58

Los detectores infrarrojos de los módulos NIRCam, NIRSpec, FGS y NIRISS son suministrados por Teledyne Imaging Sensors (anteriormente Rockwell Scientific Company). Los sistemas instalados en el JWST, así como de los instrumentos ISIM y del ICDH utilizan el protocolo SpaceWire para transmitir datos entre los instrumentos científicos y el equipo donde se analizan.60

Bus

Diagrama del Spacecraft Bus. El panel solar es de color verde y las alas de color púrpura claro son tonos de radiadores.

El bus o plataforma es el principal componente del telescopio espacial James Webb y alberga gran cantidad de piezas de computación, comunicación, propulsión y estructurales, uniendo las diferentes partes del telescopio.61​ Junto con la barrera solar, forma el elemento de “nave espacial” del telescopio espacial.62​ Los otros dos elementos principales del JWST son el Integrated Science Instrument Module (ISIM) y el Optical Telescope Element (OTE).63​ En el espacio conocido como “Región 3” de ISIM también está dentro del bus; este espacio incluye también el ISIM Command and Data Handling (ICDH) y el refrigerador criogénico MIRI.63

El bus está conectado al Optical Telescope Element por medio del Deployable Tower Assembly, que a su vez está conectado con la barrera solar.61

Con un peso de 350 kg (aproximadamente 772 lb),6​ tiene que estar preparado para soportar el JWST, que tiene un peso aproximado de 6,5 toneladas. Fabricado principalmente de material compuesto de grafito.6​ Su montaje se realizó en California en 2015, luego se tuvo que integrar con el resto del telescopio espacial previamente a su lanzamiento.64​ El bus puede proporcionar el apuntamiento de un segundo de arco y aísla la vibración hasta dos (2) miliarcosegundos.65

Está ubicado con orientación al Sol, en el lado “cálido” del telescopio, operará a una temperatura de aproximadamente 300 K.62​ Todo instrumento posicionado con orientación al Sol debe poder soportar condiciones térmicas de la órbita del halo del telescopio, que a un lado le da constantemente la luz solar y al otro la sombra por la barrera de la nave espacial.62

Otro aspecto importante del bus es su equipo central de computación, almacenamiento de memoria y comunicaciones.61​ El procesador y el software dirigen los datos hacia y desde los instrumentos, al núcleo de memoria de estado sólido y al sistema de radio que puede enviar datos a la Tierra así como recibir órdenes.61​ La computadora también controla el posicionamiento de la nave espacial, tomando los datos del sensor de los giroscopios y el rastreador de estrellas, y enviando las órdenes necesarias a los instrumentos de posicionamiento o propulsores.61

Comparativas

Comparación con el espejo primario del Hubble

Espejos del James Webb

La arquitectura Calisto para SAFIR sería una sucesora de Spitzer, que requeriría un enfriamiento pasivo aún más frío que JWST (5 kelvin).66

Vistas atmosféricas en el infrarrojo: gran parte de este tipo de luz está bloqueada cuando se observa desde la superficie de la Tierra. Sería como mirar un arcoíris pero solo ver un color.

El deseo de tener un gran telescopio espacial infrarrojo se remonta a varias décadas; en los Estados Unidos, se estudió la posibilidad de crear un telescopio en la lanzadera Shuttle Infrared Telescope Facility mientras desarrollaba el Space Shuttle reconociéndose el potencial existente de la astronomía infrarroja en ese instante.67​ En comparación con los telescopios de tierra, se sabía que los observatorios espaciales estaban libres de la absorción atmosférica de luz infrarroja; sería como un “cielo nuevo” para los astrónomos.67

La atmósfera tenue por encima de los 400 km de altura no tiene absorción medible, por lo que los detectores que operan en todas las longitudes de onda de 5 µm a 1000 µm alcanzan una alta sensibilidad radiométrica.

– S. G. McCarthy y G. W. Autio, 1978ref name=”proceedings.spiedigitallibrary.org”/>

Sin embargo, los telescopios infrarrojos tienen un inconveniente: necesitan conservarse extremadamente fríos y cuanto más larga es la longitud de onda de los infrarrojos, más fríos deben estar.68​ De lo contrario, el calor de fondo del dispositivo bloquea a los instrumentos, dejándolo completamente ciego.68​ Este inconveniente puede superarse mediante un cuidadoso diseño de la nave espacial, particularmente colocando el telescopio en un depósito con una sustancia extremadamente fría, como el helio líquido.68​ Esto significa que la mayoría de los telescopios infrarrojos tienen una vida útil limitada por su refrigerante, tan breve como cuestión de meses, tal vez pocos años como máximo.68​ Hasta ahora ha sido posible mantener la temperatura lo suficientemente baja mediante el diseño de la nave espacial para permitir observaciones de infrarrojo cercano sin un suministro de refrigerante, como por ejemplo las misiones extendidas de Spitzer y NEOWISE. Otro ejemplo es el instrumento NICMOS del Hubble, que comenzó utilizando un bloque de hielo de nitrógeno que se agotó tras un par de años, pero que luego se convirtió en un refrigerador criogénico que funcionaba continuamente. El JWST está diseñado para enfriarse sin depósito, simplemente usando una combinación de barrera contra el sol y radiadores con el instrumento de infrarrojo medio utilizando un refrigerador criogénico adicional.69

Las demoras y los aumentos de presupuestos del telescopio se pueden comparar con el telescopio espacial Hubble.70​ Cuando se empezó a hacer realidad el proyecto Hubble en 1972, tenía un presupuesto inicial estimado de 300 millones de dólares (o aproximadamente 1000 millones de dólares de 2006),70​ pero cuando fue enviado a órbita en 1990, el presupuesto ascendía aproximadamente a cuatro veces el inicial.70​ Además, los nuevos instrumentos instalados y las misiones de servicio asignadas han elevado el presupuesto a por lo menos 9000 millones de dólares en 2006.70

En 2006 se publicó un artículo en la revista Nature donde se reflejaban los resultados de un estudio realizado en 1984 por el consejo de Ciencias del Espacio, donde se estimaba que un observatorio infrarrojo de próxima generación costaría 4000 millones de dólares (cerca de 7000 millones de dólares de 2006).70

A diferencia de otros observatorios propuestos, la mayoría de los cuales ya han sido cancelados o suspendidos, incluidos el Terrestrial Planet Finder (2011), Space Interferometry Mission (2010), International X-ray Observatory (2011), MAXIM (Microarcsecond X-ray Imaging) Misión), SAFIR (Observatorio de Infrarrojo Lejano de Apertura Simple), SUVO (Observatorio Ultravioleta-Visible del Espacio) y el SPECS (Sonda Submilimétrica de la Evolución de la Estructura Cósmica), el JWST es la última gran misión astrofísica de la NASA de su generación construido,

Historia

Participación

NASA, ESA y CSA colaboran en el telescopio desde 1996. ESA participa en la construcción y en el lanzamiento desde el año 2003, tras la aprobación de su colaboración, en 2007 firmó un acuerdo con la NASA. A cambio de una participación plena, representación y acceso al observatorio para sus astrónomos, ESA proporciona el instrumento NIRSpec, el Optical Bench Assembly del instrumento MIRI, un cohete Ariane 5 ECA y mano de obra para apoyar durante las operaciones.88130​ El CSA proporcionará el Fine Guidance Sensor and the Near-Infrared Imager Slitless Spectrograph más mano de obra para apoyar las operaciones.131

Misión

La misión científica de JWST tiene principalmente cuatro objetivos: encontrar luz de las primeras estrellas y galaxias que se formaron en el universo después del Big Bang; estudiar la formación y evolución de las galaxias; comprender la formación de estrellas y sistemas solares; y estudiar los sistemas planetarios y los orígenes de la vida.135​ Estos objetivos se pueden lograr de manera más efectiva mediante la observación en longitudes de onda infrarroja cercana que en la luz en la parte visible del espectro. Por esta razón, los instrumentos de JWST no medirán la luz visible o ultravioleta como el telescopio Hubble, porque tiene una capacidad mucho mayor para realizar astronomía infrarroja. El JWST será sensible en un rango de longitudes de onda de 0,6 (luz naranja) a 28 micrómetros (radiación infrarroja profunda a aproximadamente 100 K (−170 °C; −280 °F)).

El telescopio también se utilizará para recopilar información sobre la luz de atenuación de la estrella KIC 8462852, descubierta en el año 2015, que tiene algunas propiedades anormales de la curva de luz.136

Lanzamiento y duración de la misión

El telescopio James Webb fue lanzado el 25 de diciembre de 2021 desde la Guayana Francesa a bordo de un cohete Ariane 5.36​ En principio estaba previsto que el telescopio estuviera listo para ser lanzado en 2018.137​ Tras distintos aplazamientos de fecha de lanzamiento por diversos contratiempos,138​ en junio de 2018, se estableció como nueva fecha de lanzamiento el 30 de marzo de 202131​ con un cohete Ariane 5. En junio de 2021 la fecha de lanzamiento vuelve a retrasarse a noviembre. 139​ Finalmente el telescopio James Webb fue lanzado el 25 de diciembre de 2021 desde la Guayana Francesa a bordo de un cohete Ariane 5.36

El observatorio está provisto de un “anillo-interfaz de vehículo de lanzamiento” que podría ser utilizado para que un futuro lanzamiento de aprovisionamiento del observatorio por medio de astronautas o robots, pudiera solucionar problemas de despliegue general. Sin embargo, el telescopio en sí no es útil, y los astronautas no podrían realizar tareas como intercambiar instrumentos, como con el telescopio Hubble.47​ El tiempo nominal de la misión es de cinco años, con un límite en principio de diez años.140​ JWST necesita usar propelente para mantener su órbita de halo alrededor del punto de Lagrange L2, lo que proporciona un límite superior a su vida útil esperada, y está siendo diseñado para transportar suficiente propelente para diez años.141​ La misión científica programada de cinco años comienza después de una fase de prueba y puesta en marcha de 6 meses.141​ La órbita L2 es solo metaestable, por lo que requiere un mantenimiento de estación orbital o el objeto se alejará de esta configuración orbital.142

JWST configurado para el lanzamiento

JWST no estará ubicado exactamente en el punto L2, pero hará un círculo alrededor de él en una órbita de halo.

Dos vistas alternativas desde el Telescopio espacial Hubble de la Nebulosa de la Quilla, comparando astronomía ultravioleta y visible (arriba) e infrarroja (abajo). Muchas más estrellas son visibles en este último.

Las observaciones infrarrojas pueden ver objetos ocultos en luz visible, como muestra HUDF-JD2.

Órbita

El JWST estará ubicado cerca del segundo punto de Lagrange (L2) del sistema Tierra-Sol, que se encuentra a 1 500 000 kilómetros (930 000 mi) de la Tierra, justo enfrente del Sol. Normalmente, un objeto que rodea el Sol más allá de la Tierra tardaría más de un año en completar su órbita, pero cerca del punto L2 la atracción gravitacional combinada de la Tierra y el Sol permite a la nave orbitar alrededor del Sol a la misma velocidad que la Tierra. El telescopio girará alrededor del punto L2 en una órbita de halo, que estará inclinada con respecto a la eclíptica, tendrá un radio de aproximadamente de 800 000 kilómetros (500 000 millas) y tardará aproximadamente medio año en completarse.40​ Dado que el punto L2 es solo un punto de equilibrio sin atracción gravitatoria, una órbita de halo no es una órbita en el sentido habitual: el módulo espacial está realmente en órbita alrededor del Sol, y la órbita de halo puede considerarse deriva controlada para permanecer en las proximidades del punto L2.143​ Esto requiere cierto mantenimiento de corrección de la estación: entre 2-4 m/s por año144​ de un total de 150 m/s estimado para toda la misión, incluyendo correcciones de trayectoria para llegar a la órbita alrededor del punto L2.145​ El sistema de propulsión del observatorio lo forman dos conjuntos de propulsores.146

Astronomía infrarroja

JWST es el sucesor del telescopio espacial Hubble (HST), y dado que su característica principal reside en la observación infrarroja, también es el sucesor del telescopio espacial Spitzer (SST). JWST superará con creces a ambos telescopios, pudiendo observar muchas más estrellas y galaxias, recientes y más antiguas.147​ Observar en el infrarrojo es una técnica clave para lograrlo debido al desplazamiento al rojo cosmológico y porque penetra mejor en el oscurecimiento producido por las nubes de polvo interestelar y gas. También permite poder observar objetos más fríos y débiles. Debido a que el vapor de agua y el dióxido de carbono en la atmósfera de la Tierra absorben fuertemente la mayoría de los infrarrojos, la astronomía infrarroja terrestre se limita a rangos de longitud de onda cercanos donde la atmósfera absorbe con menor fuerza. Además, la atmósfera misma irradia en la luz infrarroja, bloqueando a menudo el objeto que se observa. Esto hace que un telescopio espacial sea preferible para la observación infrarroja.148

Soporte en tierra y operaciones

El Space Telescope Science Institute (STScI), ubicado en Baltimore, Maryland, en el campus de Homewood de la Universidad Johns Hopkins, fue seleccionado como el Science and Operations Center (S&OC) para el JWST con un presupuesto inicial de 162 200 000 de dólares destinado a apoyar operaciones durante el primer año de funcionamiento tras el lanzamiento.152​ Con esta funcionalidad, el STScI será responsable de la operación científica del telescopio y la entrega de productos de datos a la comunidad astronómica. Los datos se transmitirán desde JWST hasta la Tierra a través de la Red del Espacio Profundo de la NASA, se procesarán y calibrarán en el STScI, para ser distribuido posteriormente en línea a los astrónomos de todo el mundo. De forma similar a cómo opera el Hubble, cualquier persona, en cualquier parte del mundo, podrá presentar proyectos para realizar observaciones. Cada año, varios comités de astrónomos examinarán por pares las propuestas presentadas para seleccionar los proyectos a observar en el próximo año. Los autores de las propuestas elegidas generalmente tendrán un año de acceso privado a las nuevas observaciones, después de lo cual los datos estarán disponibles públicamente para su descarga por parte del archivo en línea de STScI.

La mayor parte del procesamiento de datos del telescopio se realiza mediante ordenadores convencionales de una sola placa.153​ La conversión de los datos científicos analógicos a formato digital se lleva a cabo mediante el SIDECAR ASIC (System for Image Digitization, Enhancement, Control And Retrieval Application Specific Integrated Circuit). La NASA declaró que el SIDECAR ASIC incluirá todas las funciones de una caja de herramientas de 9 kg (20 lb) en un paquete de 3 cm y consumirá solo 11 milivatios de potencia.154​ Como esta conversión debe realizarse cerca de los detectores, en el lado más frío del telescopio, usar baja potencia de este circuito integrado será crucial para mantener la baja temperatura necesaria para el buen funcionamiento del JWST.154

Despliegue después del lanzamiento

Casi un mes después del lanzamiento, se iniciará una corrección de trayectoria para colocar el JWST en una órbita de halo en el punto lagrangiano L2.155

Linea temporal después del despliegue del JWST47

Programa científico y observaciones

El tiempo de observación de JWST se asignará por medio de un programa conocido como Director’s Discretionary Early Release Science (DD-ERS), el programa Guaranteed Time Observations (GTO) y el programa General Observers (GO).156​ El programa GTO proporciona el tiempo de observación garantizado para los científicos que desarrollaron componentes de hardware y software para el observatorio. El programa GO proporciona a todos los astrónomos la oportunidad de solicitar tiempo de observación. Los programas GO se seleccionarán a través de una revisión por parte de un Comité de Asignación de Tiempo (TAC), similar al proceso de revisión de propuestas utilizado para el telescopio espacial Hubble. Se espera que el tiempo de observación de JWST sea muy alto, lo que significaría que el número de propuestas de GO enviadas será mucho mayor que el número que se puede aprobar en cualquier ciclo de observación.

Longitudes de onda que serán observadas por el JWST y el área de los telescopios espaciales (NASA).

 

 

 

El JWST en la Guayana Francesa (ESA).

 

 

 

 

 

 

 

 

 

Rueda de filtros del instrumento MIRI (NASA/ESA).

 

Comienza la era del James Webb

12 July 2022

El telescopio espacial James Webb ya está funcionando a pleno rendimiento a 1,5 millones de kilómetros de la Tierra (en el punto de Lagrange L2 del sistema Tierra-Sol). Hoy 12 de julio de 2022 el equipo del JWST ha publicado las primeras imágenes científicas —esto es, no usadas para calibración— obtenidas por los instrumentos del observatorio. El evento había sido planificado cuidadosamente entre las agencias espaciales involucradas —NASA, ESA y CSA— para presentar al mundo el enorme potencial del James Webb, pero a última hora la Casa Blanca decidió adelantarse e hizo pública un día antes una de las cinco imágenes que iban a ser distribuidas. Al fin y al cabo, la NASA, y por extensión, Estados Unidos, contribuye con la mayoría del presupuesto del JWST —Europa participa con un 15% y Canadá con menos del 5%—, así que había que dejar claro quién lidera este ambicioso proyecto. Por otro lado, cierto es que no es nada común ver a todo un presidente de los EE. UU. presentar una imagen astronómica. La imagen del cúmulo galáctico SMACS 0723 y su lente gravitatoria asociada ya es historia y será recordada como la ‘primera imagen del James Webb’.

La nebulosa de Carina vista por el instrumento NIRCam del James Webb (NASA/ESA/CSA/STScI).

No obstante, hoy se han hecho públicas las otras cuatro imágenes previstas —técnicamente, tres imágenes y un espectro— con el objetivo de poder entender mejor las asombrosas capacidades del James Webb. El pasado 8 de julio la NASA y la ESA ya habían anunciado cuáles iban a ser los objetos protagonistas de estas primeras cinco imágenes científicas: la nebulosa de Carina (NGC 3324), el cúmulo de galaxias con lente gravitacional SMACS J0723, un espectro del planeta WASP-96 b, la nebulosa del Anillo del Sur (NGC 3132) y el cúmulo de galaxias conocido como el ‘Quinteto de Stephan’. Como comentábamos, la imagen del cúmulo lejano SMACS J0723 ya había sido publicada el día anterior, pero no por ello el resto de imágenes son menos impresionantes. Pero antes de comentarlas, quizá es conveniente destacar un par de puntos.

¿En qué se diferencian estas imágenes de las obtenidas por el Hubble?

Ante la publicación de estas imágenes son muchos los que se preguntan la diferencia con las que adquiridas por el veterano telescopio espacial Hubble. Se suele explicar que la principal diferencia es que el James Webb opera en el infrarrojo, mientras que el Hubble lo hace en el visible. Pero esto es matizable. El Hubble observa principalmente en el ultravioleta y en el visible, cierto, pero también tiene —y ha tenido— instrumentos capaces de ver el infrarrojo cercano. De hecho, actualmente el Hubble puede ver longitudes de onda de hasta 1,7 micras (infrarrojo cercano). La diferencia es que el JWST prácticamente solo ve en el infrarrojo, de 0,6 a 28 micras, mientras que el Hubble puede contemplar todo el espectro visible y el ultravioleta, además del infrarrojo cercano.

De todas formas, puede haber más diferencias, por ejemplo, entre las imágenes obtenidas por los instrumentos MIRI y NIRCam del James Webb que entre las captadas por la cámara WFC3 del Hubble y la NIRCam del JWST, por lo que dependerá de qué instrumentos exactos estemos hablando. La otra diferencia es el tamaño del espejo primario. El James Webb tiene un espejo de 6 metros de diámetro, mientras que el del Hubble es de 2,4 metros. Esto implica, por un lado, que la máxima resolución que puede alcanzar el JWST es mayor que la del Hubble, y, por otro lado, que es mucho más sensible. Es decir, con el mismo tiempo de observación el James Webb puede captar objetos mucho más débiles que el Hubble.

Región del espectro que cubre cada instrumento del James Webb (NASA).

¿Qué tienen de especial estas primeras imágenes?

Las cinco imágenes publicadas han sido elegidas para demostrar el potencial del observatorio. Por tanto, se han usado todos los instrumentos científicos del JWST. Además, se han seleccionado una serie de objetos astronómicos que concuerdan con los objetivos principales del James Webb: estudio de las primeras galaxias del universo y de la materia y energía oscuras, los núcleos activos de galaxias, investigar la formación y evolución estelar, así como las atmósferas exoplanetarias a través de espectros de transmisión. Solo han quedado fuera de esta primera selección objetos de nuestro sistema solar, aunque bien es cierto que no se trata de objetivos prioritarios para el JWST (pero sin duda veremos alguna imagen del sistema solar más pronto que tarde).

Resumen de las prestaciones de los instrumentos del JWST (NASA).

La Tierra de Al-Juarismi

Al-Juarismi

Descripción de La Tierra de Al-Juarismi

Nombre completo: Abu Abdallah Muḥammad ibn Mūsā al-Jwārizmī

Nombre nativo: أبو عبد الله محمد بن موسى الخوارزمي ابو جعفر

Otros nombres: Abu Yāffar ; Algorithmi

Nacimiento: ca. 780; Corasmia, Persia, Califato Omeya

Fallecimiento: ca. 850 (70 años); Bagdad, Califato Omeya Residencia: Bagdad

Nacionalidad: súbdito del califato omeya

Etnia: Persa

Religión: Sunismo

Ocupación: Matemático, astrónomo, geógrafo, filósofo, escritor

Empleador: Casa de la sabiduría

Lengua literaria: Árabe, persa

Obras notables: Compendio de cálculo por reintegración y comparación

Abu Abdallah Muḥammad ibn Mūsā al-Jwārizmī (Abu Yāffar) (en árabe أبو عبد الله محمد بن موسى الخوارزمي ابو جعفر; ,ca. 780-Bagdad, ca. 850), conocido generalmente como al-Juarismi, y latinizado antiguamente como Algorithmi, fue un matemático, astrónomo y geógrafo persa.12​ Fue astrónomo y jefe de la Biblioteca de la Casa de la Sabiduría de Bagdad, alrededor de 820.3​ Es considerado como uno de los grandes matemáticos de la historia.45

Su obra, Compendio de cálculo por reintegración y comparación, presentó la primera solución sistemática de ecuaciones lineales y cuadráticas. Uno de sus principales logros en el campo del álgebra fue su demostración de como resolver ecuaciones cuadráticas con el método de completación de cuadrados, justificándolo geométricamente.3​ También trabajó en el campo de la trigonometría, produciendo tablas de seno y coseno, y la primera sobre tangentes.

Su importancia radica en que fue el primero en tratar al álgebra como una disciplina independiente e introdujo los métodos de “reducción” y “equilibrio”, siendo descrito como el padre y fundador del álgebra. De hecho su nombre latinizado dio nombre a varios términos matemáticos como algoritmo y algoritmia (la disciplina que desarrolla los algoritmos6​), así como los términos guarismo78​ y el portugués algarismo que significa dígito,9​ al igual que guarismo.

También destacó como geógrafo y astrónomo, revisando la obra de Ptolomeo, Geografía, y logrando enumerar longitudes y latitudes de varias ciudades y localidades. También escribió varias obras sobre el astrolabio, el reloj solar, el calendario, y produjo varias tablas astronómicas.

Su legado continuó cuando en el siglo XII las traducciones latinas de su obra Algoritmi de número Indorum ayudó a popularizar los números arábigos en occidente, junto con el trabajo del matemático italiano Fibonacci, logrando que se reemplazara el sistema de numeración romano por el arábigo, que dio origen a la numeración actual.101112​ Adicionalmente su obra magna se usó como principal tratado de matemáticas, traducido por Robert de Chester en 1145, en las universidades europeas hasta el siglo XVI.1314

Al-Jwarizmi. Célebre matemático árabe de la primera mitad del siglo IX. De su nombre y de sus obras proceden las palabras «álgebra», «guarismo» y «algoritmo». Gracias a él, se introdujo en Occidente el actual sistema de numeración. Biografía

Poco se conoce de su biografía, a tal punto que existen discusiones no saldadas sobre su lugar de nacimiento. Algunos sostienen que nació en Bagdad. Otros, siguiendo el artículo de Gerald Toomer15​ (a su vez, basado en escritos del historiador al-Tabari) sostienen que nació en la ciudad Corasmia de Jiva (en el actual Uzbekistán). Rashed16​ halla que se trata de un error de interpretación de Toomer, debido a un error de transcripción (la falta de la conectiva wa) en una copia del manuscrito de al-Tabari. No será este el último desacuerdo entre historiadores que encontraremos en las descripciones de la vida y las obras de al-Juarismi. Estudió y trabajó en Bagdad en la primera mitad del siglo IX, en la corte del califa al-Mamun. Para muchos, fue el más grande de los matemáticos de su época.

Debemos a su nombre y al de su obra principal, Hisāb al-ŷabr wa’l muqābala, (حساب الجبر و المقابلة) nuestras palabras álgebra, guarismo y algoritmo. De hecho, es considerado como el padre del álgebra y como el introductor de nuestro sistema de numeración denominado arábigo.

Hacia 815 al-Mamun, séptimo califa Abásida, hijo de Harún al-Rashid, fundó en su capital, Bagdad, la Casa de la sabiduría (Bayt al-Hikma), una institución de investigación y traducción que algunos han comparado con la Biblioteca de Alejandría. En ella se tradujeron al árabe obras científicas y filosóficas griegas e hindúes. Contaba también con observatorios astronómicos. En este ambiente científico y multicultural se educó y trabajó al-Juarismi junto con otros científicos como los hermanos Banu Musa, al-Kindi y el famoso traductor Hunayn ibn Ishaq. Dos de sus obras, sus tratados de álgebra y astronomía, están dedicadas al propio califa.

Obra

Son de destacar sus logros y obras en Álgebra, Aritmética, Astronomía, Geografía, etc…

Así en:

Astronomía

De su tratado sobre astronomía, Sindhind zij, también se han perdido las dos versiones que escribió en árabe. Esta obra31​ se basa en trabajos astronómicos indios “a diferencia de manuales islámicos de astronomía posteriores, que utilizaron los modelos planetarios griegos del ‘Almagesto’ de Ptolomeo.32​ El texto indio en que se basa el tratado es uno de los obsequiados a la corte de Bagdad alrededor de 770 por una misión diplomática de la India. En el siglo X al-Maŷriti realizó una revisión crítica de la versión más corta, que fue traducida al latín por Adelardo de Bath; existe también una traducción latina de la versión más larga, y ambas traducciones han llegado hasta nuestro tiempo. Los temas principales cubiertos en la obra son los calendarios; el cálculo de las posiciones verdaderas del Sol, la Luna y los planetas; tablas de senos y tangentes; astronomía esférica; tablas astrológicas; cálculos de paralajes y eclipses; y visibilidad de la Luna. Rozenfel’d analiza un manuscrito relacionado sobre trigonometría esférica,33​ atribuido a al-Juarismi.

Geografía

En el ámbito de la geografía, en una obra llamada Kitab Surat al-Ard (en árabe: كتاب صورةلأرض, Libro de la apariencia de la Tierra o de la imagen de la Tierra), escrito en el año 833, revisó y corrigió los trabajos anteriores de Ptolomeo con respecto a África y el Oriente. Lista latitudes y longitudes de 2.402 lugares, y emplazó ciudades, montañas, mares, islas, regiones geográficas y ríos, como base para un mapa del mundo conocido entonces. Incluye mapas que, en conjunto, son más precisos que los de Ptolomeo. Está claro que donde hubo mayor conocimiento local disponible para al-Khwârazm, como las regiones del Islam, África y el Lejano Oriente , el trabajo es mucho más exacto que el de Ptolomeo, pero parece haber usado los datos de este para Europa. Se dice que, en estos mapas, trabajaron a sus órdenes setenta geógrafos.

Sólo existe una única copia sobreviviente del Kitab Surat-al-Ard, guardada en la Biblioteca de la Universidad de Estrasburgo. En la Biblioteca Nacional de España de Madrid se conserva una copia traducida al latín.

Aunque ni la copia en árabe ni la traducción al latín incluyen el mapa del mundo, Hubert Daunicht pudo reconstruir un mapamundi usando su lista de coordenadas. 34

Al-Khwarizmi corrigió la sobreestimación que había hecho Ptolomeo sobre la superficie del Mar Mediterráneo 3536​ (desde las Islas Canarias a las costas del este del Mediterráneo); Ptolomeo hizo una estimación que el mar Mediterráneo tenía 63 grados de longitud , mientras que él hizo la estimación más correcta que el mar tenía unos 50 grados de longitud. 37​ También contrarió a Ptolomeo diciendo que el océano Atlántico y el océano Índico eran dos cuerpos abiertos de agua, no mares. 38​ Al-Khwarizmi también estableció el meridiano de Greenwich del Viejo Mundo en la orilla oriental del Mediterráneo, 10-13 grados al este de Alejandría (Ptolomeo situó el meridiano 70 grados al oeste de Bagdad). La mayoría de los geógrafos musulmanes de la edad medieval continuaron usando el meridiano de Greenwich de al-Khwarizmi.

La mayoría de los topónimos usados por al-Khwarizmi coinciden con los de Ptolomeo, los de Martellus y los de Behaim. La forma general de la costa es la misma entre Taprobane y Kattigara. La costa atlántica de la cola del Dragón, que no existe en el mapa de Ptolomeo, se traza en muy pocos detalles en el mapa de Al-Khwarizmi, pero es clara y más precisa que la del mapa de Martellus y la versión de Behaim.

Otras obras

El Kitāb al-Fihrist de Ibn al-Nadim, un índice de libros árabes, menciona el Kitāb al-Taʾrīkh de al-Khwārizmī en árabe: كتاب التأريخ), un libro de anales. No sobrevive ningún manuscrito directo; sin embargo, una copia había llegado a Nusaybin en el siglo XI, donde la encontró su obispo metropolitano, Mar Elyas bar Shinaya. La crónica de Elías lo cita desde “la muerte del Profeta” hasta el año 169 AH, momento en el que el texto de Elías se encuentra en una laguna.39

Varios manuscritos árabes en Berlín, Estambul, Tashkent, El Cairo y París contienen más material que seguramente o con cierta probabilidad proviene de al-Khwārizmī. El manuscrito de Estambul contiene un artículo sobre relojes de sol; el fihrist atribuye a al-Khwārizmī Kitāb ar-Rukhāma (t) (árabe : كتاب الرخامة). Otros trabajos, como uno sobre la determinación de la dirección de La Meca, tratan sobre la astronomía esférica

Dos textos merecen un interés especial sobre el ancho de la mañana (Ma’rifat sa’at al-mashriq fī kull balad) y la determinación del acimut desde una altura (Ma’rifat al-samt min qibal al-irtifā’).

Su obra conocida se completa con una serie de obras menores sobre temas como el astrolabio, sobre el que escribió dos textos, sobre relojes solares y sobre el calendario judío. También escribió una historia política conteniendo horóscopos de personajes prominentes.

Homenajes

En Jiva, Uzbekistán, lugar frecuentemente aceptado como de su probable nacimiento, existe una estatua en su honor. La imagen muestra a Juarismi sentado sobre un banco, en posición de razonamiento, ya que la imagen mira hacia el suelo, como si estuviese calculando o leyendo. Otra imagen del sabio, ésta vez de pie y con los brazos extendidos, fue ubicada en la ciudad uzbeka de Urgench.

El 6 de septiembre de 1983, el gobierno soviético lanzó una serie postal de un sello conmemorativo con el rostro del sabio persa, con la inscripción “1200 años” en referencia a los 1200 años de su probable nacimiento. En 2012 el gobierno uzbeko también lanzó un sello postal conmemorativo de Juarismi, inspirado en la estatua del sabio que actualmente está en Jiva.

Al-Juarismi revolucionó la cartografía de su época con los aportes que hizo en Geografía, corrigiendo errores que se venían arrastrando por más de 600 años, desde los tiempos del célebre sabio greco-egipcio Claudio Ptolomeo. Posicionó mejor las ciudades y montañas más importantes del mundo conocido y definió con más precisión sus mares, incluyendo el Mediterráneo. El paradigma de la planeza de la Tierra era Occidental, no Oriental. Al-Juarismi participó en un proyecto para medir la circunferencia de la Tierra.

La tabla de coordenadas de Al-Juarismi

Comentarios

Una de las compilaciones de coordenadas geográficas más antiguas que se conservan es la que realizó en el siglo IX el astrónomo y matemático Al-Juarismi. Las tablas de Al-Juarismi se encuentran en un librito llamado Kitab surat al-ard («Libro de la forma de la Tierra») del cual solo se conserva una copia posterior, fechada en el mes de Ramadán del año de la Hégira 428 (junio – julio de 1037 de la era cristiana), y conservada actualmente en la Biblioteca de la Universidad de Estrasburgo.

A través de Calames, que es el portal francés de manuscritos antiguos, se puede acceder a la ficha del manuscrito [1] pero no a imágenes del mismo. Tampoco parece encontrarse en internet una edición comentada que publicó Hans von Mžik en 1926 [2]. Por suerte sí se encuentra disponible en Archive.org un estudio que realizó el italiano C.A. Nallino en 1894 [3].

El título completo del manuscrito es «Libro de la figura [también puede traducirse por la forma o la representación] de la Tierra, de las ciudades, los montes, los mares, las islas y los ríos. Lo tradujo Abu Yāffar Muhammad ibn Mūsā al-Jwārizmī del libro ‘Geografía’ compuesto por Ptolomeo al-Qlaudi». Tras el título viene la frase convencional  «En nombre de Dios clemente y misericordioso» y a continuación viene directamente una serie de listas de coordenadas, algunas en forma de tabla y otras en forma de texto.

La primera tabla contiene 537 ciudades (de las cuales 9 sin coordenadas y 5 o 6 repetidas), ordenadas por «clima» (bandas de latitud) y, dentro de cada clima, por longitud creciente desde Occidente (Atlántico) hasta Oriente. La segunda tabla da las coordenadas de 209 montes, algunos sin nombre propio. Sigue una descripción sucinta de las costas de cinco mares, que básicamente se limita a indicar las coordenadas de los accidentes costeros principales: cabos, golfos, desembocaduras de ríos, etc. Luego viene la lista de las islas; para las menores solo coordenadas del centro y de los extremos mientras que para las mayores también se dan las de los accidentes costeros principales. La gran mayoría de las islas no tienen nombre. A continuación figura una tabla de regiones en la que se dan las coordenadas del punto central de cada una y por fin la parte más larga del manuscrito, la descripción de los ríos, en la que se mencionan los meandros principales y las ciudades que atraviesa cada uno. La mayoría de los ríos carecen de nombre.

Del contenido del Kitab surat al-ard queda claro que  no es verdaderamente un libro de geografía y mucho menos una traducción de la Geografía de Ptolomeo. Además los valores de las coordenadas geográficas anotados por Al-Juarismi raramente coinciden con los de Ptolomeo.  Por otra parte, algunas indicaciones contenidas en las tablas permiten discernir que el autor del Kitab transcribió los nombres y las coordenadas geográficas copiándolos de un mapa o atlas. Esto explica la gran cantidad de montes, islas y ríos que no tienen nombre pero sí cifras de latitud y longitud. Se puede especular que el mapa que sirvió de fuente pudo ser el que mandó realizar en Bagdad el califa Al-Mamun ya que Al-Juarismi perteneció al círculo de científicos que trabajaron para este califa.

En términos actuales se diría que Al-Juarismi digitalizó el mapamundi de Al-Mamun, es decir, que a partir de una imagen creó una tabla de cifras que recogían lo esencial de la información contenida en la imagen. El manuscrito no explica el motivo de esta digitalización. El Kitab surat al-ard  es el único trabajo relacionado con la cartografía que se le conoce a Al-Juarismi, cuyos campos principales de interés eran la astronomía y las matemáticas.

Tratado de astronomía y obra en geografía

Por otro lado, Al-Khwarizmi también realizó un tratado sobre Astronomía. Se conservan las dos versiones latinas solamente. En este tratado se podían visualizar estudios de calendarios y posiciones reales del Sol, la luna y los planetas. Las tablas de senos y tangentes estaban aplicadas a la astronomía esférica. También nos podemos encontrar en este tratado tablas astrológicas, cálculos de paralaje y eclipses y visibilidad de la luna.

También se dedicó en parte a la geografía, donde realizó una obra llamada Kitab Surat-al-Ard. En esta obra se puede ver cómo corrige a Ptolomeo en todo lo referente a África y Oriente. Realizó una lista con las latitudes y las longitudes de las ciudades, montañas, ríos, islas, diferentes regiones geográficas e incluso de los mares. Estos datos fueron utilizados como base para crear un mapa del mundo que entonces se conocía.

Como puede ver, Al-Khwarizmi realizó importantes aportes en el mundo de la ciencia y, a día de hoy, son muchas las aplicaciones que tenemos en las matemáticas gracias a él.

Reconstrucción de Daunicht de la sección del mapa mundial de al-Juarismi relativa al Océano Índico.

Por investigaciones y comparaciones de datos sobre otros mapas de famosos cartógrafos, se deduce por la identificación de ríos, cabos y montañas que expresa a América del Sur. Por lo tanto, Al-Juarizmi es el autor del mapa más antiguo que represente América del Sur con sus dos orillas, la del Pacífico y la del Atlántico. ¿Elucubraciones del investigador?

Disco genético

Disco genético

Transcrito de Wikipedia

Este del que voy a hablar hoy es un extraordinario disco de piedra negra, descrito de esta manera en muchas páginas de Internet:

Mide 22 centímetros de diámetro y pesa dos kilos. Está tallado en lidita, una roca sedimentaria de color negro de gran dureza. Fue tallada hace 6.000 años aunque está asignado a la cultura Muisca. Tiene un agujero en el medio lo que parece indicar que se ensartaba en un palo. El trabajo de tallado es extraordinario, pero lo más asombroso de este disco precolombino, es lo que se representa en él: un conocimiento que se adelanta a su época. Si este disco es auténtico, supondría tener que tirar todos los libros de historia a la basura y empezar de cero.

¿Y qué contiene el disco?

Disco Genético por ambos lados

Si la parte anterior les pareció curiosa, no van a creer esta, ya que es la más interesante: El disco está adornado con diseños, de lo que parecen ser los ciclos en los cuales se desarrolla un ser humano recién nacido, desde su fase cuando se juntan el espermatozoide y el óvulo hasta que toma la forma de un pequeño bebé. No sobra decir que esto solo sería posible de ver a través de un microscopio.

Abajo está la reproducción de dos seres humanos, con sus respectivos genitales bien marcados. Esto solo por el lado A. El lado B contiene diseños de peces, ranas, serpientes, figuras abstractas y lo que parece ser un padre con su hijo.

Interesante, ¿no? Es una pieza de más de 22,000 Años A.N.E. que no se puede reproducir en nuestros días, en un material muy difícil de encontrar, con inscripciones que parecen salidas de un libro de biología o genética de una civilización que aún es desconocida.

Se sabe de la pieza pertenece a Jaime Gutierrez, profesor de diseño industrial muy reconocido en Colombia. Seguramente fue rescatada por un huaquero o por un campesino arando la tierra y le fue vendida en algunos pesos.

Quién puso esta roca de moda fue el investigador Klaus Dona con su teoría de los Ooparts u “objetos fuera del tiempo” que él mismo colecciona. Por esta causa, se desconoce el verdadero origen de la pieza (ni departamento, ni municipio, ni vereda, nada), por lo que de paso lograron que nadie pudiese saber el lugar de origen para realizar prospecciones.

Veamos alguno de sus símbolos en detalle.

En la sección marcada en tono rojizo se aprecia una mujer, un hombre y encima de ambos, un embrión. En la sección resaltada en azul, los genitales masculinos y femeninos y lo que parece fluido seminal. En la sección en verde claro, se aprecia una pareja y una cría de unos humanoides con una cabeza con una extraña forma. En la sección en verde oscuro, lo que parece la evolución de un anfibio a un ser humano.

En la otra cara hay unos símbolos más difíciles de interpretar. Pero destaca esta sección. ¿Representa una mitosis celular que se convierte en un embrión?

El disco fue encontrado por Jaime Gutiérrez-Lega, un diseñador que trabaja como profesor en una universidad de Colombia, y fue examinado en el Museo de Historia Natural de Viena por la doctora Vera M. F. Hammer, experta en piedras preciosas y minerales. El disco es utilizado por Klaus Dona en sus charlas sobre misterios sin resolver.

Y hasta aquí la historia, tal como la veréis narrada en un sinfín de páginas, copias unas de otras. Pero no encontraréis muchos más detalles. No encontraréis el lugar exacto donde se realizó el hallazgo, ni el equipo que lo hizo. Ni la relación de otros elementos encontrados en la misma zona. Tampoco encontraréis ningún documento oficial con detalles sobre esta pieza.

La persona de Klaus Dona, conocido vocero de lo paranormal y de los  OOPArts, orbitando alrededor de este disco, hace sospechar de su autenticidad más que otra cosa.

Pero analicemos más en detalle la información de la que disponemos.

El análisis del museo de Viena

Klaus Dona publica en su web que el disco fue revisado por la doctora Vera M. F. Hammer, y lo dice de tal manera que parece que ella corroboró todos los datos del disco, que él publica en su site.

Pero ¿qué fue lo que realmente pasó?

La Dr. Hammer, trabaja desde 1992 como conservadora del Museo de Historia Natural de Viena, en el departamento de mineralogía y petrología. El autor del blog Archeology Fantasies contactó con ella para preguntarla por ese análisis, que ocurrió en 2001 a petición del propio Klaus Dona. Esta fue su respuesta:

El Sr. Klaus Dona me pidió en el año 2001, año en el que organizó en Viena  la exposición “misterios no resueltos”, que analizase algunos de los objetos expuestos. La mayoría de los objetos eran contemporáneos y le dije que se trataba de imitaciones, pero esto no era lo que Klaus quería escuchar. Incluso otros científicos de nuestro museo le dijeron a los propietarios de los objetos, y al propio Sr. Klaus Dona, que los objetos no eran lo que ellos creían. Algunos de los objetos expuestos eran curiosidades naturales, otros eran falsificaciones como las que se puede comprar en cualquier tienda turística. Pero de todos modos, nuestros comentarios acerca del llamado “disco genético” fueron únicamente que se compone de feldespato, cuarzo y mica, lo cual fue comprobado por Difracción de Rayos X. Mi ex director, que era especialista en petrología, dijo que esta roca podría ser lidita (un tipo de pizarra gris fina) o un producto artificial hecho a partir de este material. Yo nunca he clasificado el disco o cualquier otro de estos objetos en determinado período cultural o ni los he datado de ninguna manera, porque además no es mi competencia. Por lo tanto, esta fue la única información que dimos. ¡Nada más! Cualquier interpretación de los símbolos y signos, su edad o cualquier otra cosa, están únicamente en la cabeza del dueño y/o del organizador de la exposición (Klaus Dona). En el catálogo de la exposición “misterios no resueltos” no aparecía ningún autor, por lo que, de hecho, no sé quien escribió toda esa sarta de tonterías.

Creo que no hace falta añadir mucho más. La pieza es obviamente falsa, posiblemente hecha en un molde, y todo lo que gira en torno a ella, también lo es.

Mapamundi de Beato de Liébana

Mapamundi de Beato de Liébana

Mapamundi de Beato de Liébana conservado en el manuscrito de Saint Severn. El mapa se encara hacia el este y no hacia el norte, en contraste con lo usual en cartografía moderna. Se dice por tanto que el mapa está orientado.

El Mapamundi de Beato de Liébana (776) es una de las principales obras cartográficas de la Alta Edad Media. Fue elaborado por el monje lebaniego del mismo nombre, basándose en las descripciones aportadas por San Isidoro de Sevilla, Ptolomeo y las Sagradas Escrituras. Aunque el manuscrito original se ha perdido, aún quedan algunas copias de una fidelidad bastante grande respecto al original.

El mapa se reproduce en el prólogo del segundo libro de los Comentarios al Apocalipsis de Beato de Liébana. La función principal del mapa no es la de representar cartográficamente el mundo, sino la de servir de ilustración a la diáspora primigenia de los apóstoles.

Se conocen como «Los Beatos» los manuscritos de los siglos X al XIII, más o menos abundantemente ilustrados, donde se copian el Apocalipsis de San Juan y los Comentarios sobre este texto redactados en el siglo VIII por el Beato de Liébana. Escribió los Comentarios al Apocalipsis de San Juan (Commentarium in Apocalypsin), en el año 776. En esta versión pretende hacer frente a la crisis por la que pasaba la Iglesia en aquellos años e intenta demostrar que está en posesión de la traditio sobre la llegada y predicación del Apóstol Santiago en España. Para ello se basa en ciertos escritos del libro Breviario de los Apóstoles.

El mapamundi es uno de los conocidos como mapas T en O también llamados Orbis Terrarun. En estas piezas la O representa la concepción esférica del mundo mientras que la T son las masas de agua que dividen la tierra. Este tipo de mapas fue muy frecuente en la Edad Media aunque cabe destacar que la mayoría de los eruditos de la época ya sabían de la concepción esférica de la Tierra y no plana como se representa en este tipo de mapas.

En la Edad Moderna y sobre todo tras el descubrimiento del continente americano este tipo de mapas cayeron en desuso ya que no hacían posible la incorporación de las nuevas tierras descubiertas.

La cosmovisión europea altomedieval

Según las descripciones del Génesis que Beato tomaba por base, la Tierra era plana y sobre ella se elevaba la bóveda celeste en la que se movían el Sol, la Luna y toda una serie de luminarias menores como los planetas y las estrellas. Se consideraba que existían dos tipos de masas de agua: las aguas superiores, que eran contenidas por la bóveda celeste y que usualmente caían a la tierra en forma de lluvia, y las aguas inferiores, que eran las que nutrían los arroyos, los ríos y las grandes masas de agua salada.1

Esta imagen de El Jardín de las Delicias representa la cosmovisión hebrea recogida en el libro del Génesis. La tierra es un disco rodeado de dos masas acuosas: las aguas superiores, que ocasionalmente caen a la tierra en forma de lluvia cuando YHVH abre las compuertas del cielo, y las aguas inferiores, formadas por los mares, los lagos y el Océano. En las profundidades de la esfera del cosmos se halla el sheol, morada de los muertos hasta la llegada del Juicio Final.

En este Mapamundi, el orbe se representa como un disco circular rodeado por las aguas del Océano. La tierra se divide en tres continentes: Asia (semicírculo superior), África (cuadrante inferior derecho) y Europa (cuadrante inferior izquierdo), que corresponden respectivamente a los descendientes de los tres hijos de Noé: Sem, Cam y Jafet. Las masas continentales son separadas por corrientes de agua o mares interiores como el mar Mediterráneo (Europa-África), el río Nilo (África-Asia) y el Bósforo y el mar Egeo (Europa-Asia). En el centro del mundo se sitúa Jerusalén, la ciudad sagrada del judaísmo y la cristiandad, donde Abraham estuvo a punto de sacrificar a su hijo Isaac y donde tuvieron lugar los sucesos de la Pasión y Resurrección de Cristo. La concepción de Jerusalén como umbilicum mundi era bastante usual en la espiritualidad cristiana medieval: en la Divina Comedia, Dante inicia su viaje a los infiernos desde el subsuelo de esta ciudad.

Descripción de los continentes

Asia

En esta ilustración de Las muy ricas horas del duque de Berry se representa la expulsión de Adán y Eva del Paraíso Terrenal. Durante la Edad Media se creía que el Jardín del Edén se situaba en el extremo oriental del mundo, y que era posible, en teoría alcanzar aquel lugar. Colón lo intentó.

En el extremo oriental de Asia se halla el Jardín del Edén, territorio paradisíaco donde no hace frío ni calor y donde crecen árboles y maderas de todo tipo. En su centro se halla el Árbol de la Vida y junto a él una fuente de donde manan los cuatro ríos del Paraíso: Tigris, Éufrates, Pisón y Guijón. La entrada al Paraíso se halla protegida por un querubín que blande una espada de fuego. En la costa meridional del continente asiático se sitúa la India, enorme territorio atravesado por tres ríos de nombre Indo, Ganges e Hipane. Es abundante en hombres de color oscuro, elefantes, rinocerontes, especias y piedras preciosas como los rubíes, las esmeraldas o los diamantes.

Sus tierras están bendecidas por el viento del oeste, Favonio, y por ello dan dos cosechas al año. Allí se sitúan los montes del Oro, cuyo acceso está vedado a los humanos por grifos y dragones. Frente a la costa india se sitúan las islas de Taprobane (Ceilán), abundante en gemas y elefantes, Chrysa y Argyre, fecundas en oro y en plata respectivamente, y por último Tyle, cuyos árboles jamás pierden sus hojas (se ha especulado con que se trate de alguna isla de Indonesia).

Al oeste de la India se encuentra Partia, región que se extiende entre los ríos Indo y Tigris. Se divide en cinco provincias diferentes: Aracusia, la Partia propiamente dicha, llamada así por los partos, bravos guerreros que, procedentes de Escitia, fundaron un imperio que trató de igual a igual a Roma, Asiria, llamada así por Asur, el hijo de Sem, famosa por haber inventado la púrpura y todo tipo de perfumes y ungüentos; en ella se situaba Nínive, la capital del antiguo imperio de los asirios, y a donde fue a predicar inútilmente el profeta Jonás; Media, que se divide en dos partes, la Media Mayor y la Media Menor; y por último Persia, cuna del rey Ciro, el ungido de Dios, región donde surgió por primera vez la ciencia mágica, introducida por Nebroth el gigante, tras la confusión de las lenguas surgida en Babel.

Mesopotamia es la región situada entre los ríos Tigris y Éufrates. En ella se encuentran las regiones de Babilonia y Caldea. Babilonia fue la antigua conquistadora del reino de Judá y el lugar donde se exilió el pueblo judío. En esa ciudad tuvieron lugar las revelaciones del profeta Ezequiel, que tanta influencia tuvieron en la génesis de la Crónica Profética. De Caldea (sur de Mesopotamia) suponían las crónicas asturianas que procedían las hordas que invadieron España y fueron derrotadas por Pelayo en Covadonga. Entre las ciudades más importantes de esta región pueden citarse Ur, cuna del patriarca Abraham, así como Erech (Uruk), que fue fundada por Nimrod.

La tradición judeocristiana hace a Ur de Caldea patria del patriarca Abraham. Las Crónicas Albeldense y Rotense, cuando narran la invasión islámica de España, realizan una sutil distinción étnica entre los invasoras: Los bereberes (como Tarik) son descritos con el nombre de moros, mientras que a los árabes (la etnia de Muza ibn Nusair) se les denomina caldeos. Y es que en aquellos tiempos se consideraba que era Caldea y no Arabia la patria original de los sarracenos.

Al sur del río Éufrates y del sinus Persicum (golfo Pérsico) se situaba Arabia, región desértica cuya parte meridional (actual Yemen) recibía el nombre de Arabia Felix, la Arabia Feliz. Era una tierra rica, fértil, donde abundaban las piedras preciosas, la mirra y el incienso. En ella vivía el fabuloso ave fénix, que tras morir rodeado de fuego volvía a renacer de sus cenizas.

En la frontera noroccidental de Arabia, ya en territorios del imperio romano, se extendía la provincia de Siria, cuyos límites eran los montes Tauro y Cáucaso por el norte, el Éufrates por el Este, el mar Mediterráneo y Egipto a Occidente, y Arabia en el sur. Siria tenía tres provincias diferentes: Comagena, Fenicia y Palestina. El territorio de Fenicia llegaba desde el Mar Mediterráneo hasta el Monte Líbano y el Mar de Tiberiades. En ella se encontraban las famosas ciudades de Sidón y Tiro. En esta última predicaron tanto el profeta Elías como Jesucristo. Más al Sur se situaba Palestina, que a su vez se subdividía en cuatro provincias diferentes: Galilea, en la que se enclavaban Nazareth, el Mar de Tiberiades, donde trabajaban como pescadores buena parte de los apóstoles, y el monte Tabor, lugar donde tuvo lugar la Transfiguración.

El río Tigris tenía un tipo de agua agridulce. Es el río en que se encuentra la civilización sumeria, cerca del río Éufrates.

Se entiende como Beatos no sólo aquellos difuntos que la Iglesia Católica, a través del Papa, ha certificado y elevado sus virtudes hacia el camino de la canonización, sino que también son aquellos códices manuscritos medievales, que fueron realizados como copias al Explanatio in Apocalypsin o Comentario del Apocalipsis de San Juan, escrito por el Beato de Liébana en el año 776 a.C.

El mapamundi del Beato de Liébana es el más importante, y el prototipo de otros muchos mapas de Beatos, como el del Beato de Navarra, el del Beato de Saint Server, Beato del Burgo de Osma, etc…, todos inspirados en los denominados: mapas T en O también llamados Orbis Terrarun, cuyo precursor fue San Isidoro de Sevilla. Unos de otros suelen copias, con ligeras modificaciones, por lo que suelen ser prácticamente iguales.

Mapa mundial de Albi

Mapa mundial de Albi

Mapa mundial de Albi

El mapamundi Albi es un mapa del mundo medieval (mapamundi), incluido en un manuscrito de la segunda mitad del VIII ° siglo conservado en la antigua capital de la biblioteca multimedia Pierre Amalric de Albi. Este manuscrito procede de la biblioteca del capítulo de la catedral de Sainte-Cécile d’Albi. El mapamundi Albi es el documento más antiguo conservado en una representación global y no abstracta del mundo habitado, con la excepción de dos tabletas (uno de Mesopotamia (hacia – 2600 aC), y el otro de Babilonia (V º siglo aC)1 . Fue incluido en octubre de 2015 registrar la Memoria del Mundo de la UNESCO 2 .

Descripción del manuscrito y del mapa

El manuscrito que lleva el mapa (Inv. Ms 29 (115)) incluye 77 hojas. Fue designado para la XVIII ª siglo Miscelánea” (palabra latina “colección” significado). Esta colección contiene 22 documentos diferentes, que tenían funciones educativas. El manuscrito, un pergamino probablemente elaborado con piel de cabra o de oveja1, se encuentra en muy buen estado de conservación.

La tarjeta en sí mide 27 cm de alto por 22,5 de ancho. Representa a 23 países de 3 continentes y menciona varias ciudades, islas, ríos y mares. El mundo conocido está representado en forma de herradura, que se abre al nivel del Estrecho de Gibraltar y rodea el Mediterráneo, con el Cercano Oriente en la parte superior, Europa a la izquierda y el norte de África a la derecha.

Inscripciones

País y desierto

El mapa menciona 23 países en 3 continentes 1 :

  • Europa: Ispania (España), Britania (Bretaña), Gallia (Galia), Italia (Italia), Gotia (país de los godos, que designa a Germania), Tracia (Tracia), Macedonia (Macedonia), Agaia (Achaia, que designa a Grecia), Barbari (dominio de los bárbaros).
  • África (Afriga): Mauritania (Mauritania), Nomedia (Numidia), Libia (Libia), Etiopía (Etiopía), Egyptus (Egipto).
  • Oriente: Armenia (Armenia), India (India), Scitia (tierra de los escitas), Media (tierra de los medos), Persida (Persia), Judea (Judea), Arabia (Arabia).

Están representadas las cinco islas más grandes del Mediterráneo: Córcega, Cerdeña, Sicilia, Creta y Chipre.

También hay un desierto ( deserto ) y el monte Sinaí ( Sina ) representado por un triángulo.

Ciudades e islas

  • Ciudades: Babilonia, Atenas, Rávena, Roma, Antioquía, Jerusalén, Alejandría y Cartago.
  • Islas: Chipre, Creta, Sicilia, Cerdeña y Córcega.

Ríos, mares y océanos

  • Océano: Oceanum océano, el en el mapa rodea toda la tierra como se imaginó en ese momento.

El mapa mundial de Albi

Mappa mundi de El Albi se conserva en un manuscrito (Ms 29 (115)) de 77 hojas, que constituye una colección de 22 piezas de textos diferentes, titulada en el siglo XVIII ” Miscellanea ” (colección). Le sigue inmediatamente un índice de vientos y mares.

Este manuscrito es uno de los que constituían la biblioteca del capítulo de la catedral de Albi: en el reverso de la página de la portada volante, al principio del libro, se encuentra el ex-libris (marca de pertenencia) dibujado en un Escritura del siglo XVIII: “Ex-libris Fri. Capituli Ecclesiae Albiensis”(“ Parte del venerable capítulo de la Iglesia de Albi ”).

Es un manuscrito en pergamino. Probablemente sea una piel de oveja o, dado el origen sureño del documento, una cabra. Esto es de u hace piel relativamente gruesa, el lado ‘hair’ muy amarillo, con perforaciones originales (la degradación de la piel debido a la lesión del animal) y una hojas de tamaño irregulares. Estos elementos son bastante característicos de los manuscritos en pergamino del siglo VIII.

El manuscrito está en excelentes condiciones.

¿Para qué era?

El manuscrito y el mapa tenían originalmente una función educativa. Como parte de una colección dedicada a la enseñanza de la gramática, la historia y la geografía, sirvió para dar una visión del mundo y constituir una herramienta para comprender mejor la geografía y por ende la historia. Quizás ella también tuvo que contribuir a la meditación contemplativa, ofreciendo la misma mirada que Dios tenía sobre el mundo: ¡una vista del cielo!

¿Cómo llegó a nosotros?

El mapa se mantuvo en la biblioteca capitular de la catedral durante la Edad Media, donde se utilizó con regularidad. Entre los siglos XII y XVIII quedan pocos elementos de la historia de este documento. Solo sabemos que la encuadernación fue restaurada en el siglo XVII y luego en el siglo XVIII. Escapado de las llamas durante la Revolución (todos los archivos de la catedral quemados), pasó a ser propiedad del Estado y fue confiado a la ciudad. En 1843, el mapa casi se vendió. En 1908, tuvo lugar en la biblioteca del Hôtel Rochegude antes de ser transferido a las reservas de la mediateca en 2001.

 [Artículo publicado en Grand A – n ° 34 – Sept-oct. 2015]

El Índice (Indeculum quod maria vel venti sunt) menciona 12 nombres de vientos y 35 nombres de mares (en el mapa solo se dan 1 nombre de viento y 7 nombres de mares).

Elementos de datación y origen geográfico

La escritura en La Mappa mundi es un “uncial”, originario de Albi, Septimanie (sur de Francia) o España; esta escritura se utilizó hasta el siglo VIII. Varias manos, todas del mismo período, están en el origen de la copia de los distintos textos del manuscrito.

La presencia y mención de la ciudad de Rávena, representada a la par con Roma: Rávena fue sucesivamente la residencia oficial de los últimos emperadores de Occidente del siglo V, luego la capital del reino gótico de Italia, y finalmente la residencia de el exarca representante del poder bizantino hasta 751. En 752, la ciudad fue tomada por el rey de los lombardos, Aistolf, luego en 756 por Pépin le Bref, rey de los francos, quien se la dio al Papa. Estos hechos, cuyas repercusiones se hicieron sentir en toda Europa, y el hecho de que Rávena se mencione así en este mapa, permiten proponer una fecha de realización en la segunda mitad del siglo VIII.

Importancia global

Mappa mundi de tiene El Albi una importancia mundial considerable:

Es único e insustituible.

Tiene una antigüedad excepcional (segunda mitad del siglo VIII). Es uno de los primeros intentos conservados de representar el mundo, no de una manera puramente abstracta o simbólica, sino de situar provincias y regiones del mundo.

Solo se conoce otro mapa manuscrito del mismo período: es el de un manuscrito conservado en el Vaticano. Pero no tienen conexión ni punto en común, ni por forma ni por distribución general.

Con la excepción de dos tablillas, una mesopotámica (c. – 2600) y la otra babilónica (c. – 600), Mappa mundi de el Albi es uno de los dos documentos conservados más antiguos que presentan el mundo habitado. Hay otros mapas del mundo, copias de documentos más antiguos o representaciones del mundo (como la Mesa de Peutinger), pero se conservan en copias posteriores a la de Albi.

Es un testimonio precioso de un estado de conocimiento y de la concepción del mundo; es un testimonio extremadamente raro de las prácticas de enseñanza intelectual de este período.

La singularidad de la representación del mundo que ofrece es excepcional. Mostrado como un cabestrillo, no se parece a ninguno de los otros mappae mundi conservados. Esta forma puede provenir de la lectura de la Periegesis de Dionisio, (principios del siglo II d.C., traducida del griego al latín en el siglo VI). Es testimonio de una de esas empresas de la Antigüedad tardía, por la enseñanza y la comprensión más fácil de la geografía. Dionisio compara la forma del mundo con una honda.

Tiene una importancia mundial, tanto para los diferentes países que representa, de los que suele ser la primera representación conservada, para la memoria del mundo, como para la historia de la cartografía mundial.

Como tal, La Mappa mundi d’Albi fue advertida por los primeros historiadores de la cartografía (el vizconde de Santarem y J. Lelewel): la señalan como un “monumento” de la cartografía, ya en 1849.

El mundo científico de la cartografía y la representación del espacio muestra un interés creciente por este documento: en 2001, su inclusión en la importante exposición de Milán sobre representaciones del mundo, y el desarrollo de la bibliografía desde 2001 (12 publicaciones lo mencionan en 13 años, la mitad de los cuales proceden de investigadores no franceses), son testimonios.

Está en el cruce de dos eras. Es probable que sea la reanudación de un mapa antiguo actualizado y cristianizado:

Se mencionan las principales ciudades de la Antigüedad clásica como Atenas y Cartago; por un lado se puede ver una isla británica, y por el otro, los principales imperios antiguos (Babilonia, Persia, Macedonia, Roma); el norte, sede tradicional de amenazas contra la civilización según la etnografía romana, está ocupado por los Barbari, elemento que recuerda la caída del Imperio Romano de Occidente; los nombres dados para el norte de Europa son menos numerosos (Gotia, Barbari, Britania).

Numerosos elementos cristianos están presentes: se representan los ríos del paraíso terrenal mencionado en el Génesis: el Tigre y el Phison (Indo); Se menciona a Jerusalén, pero no está en el centro del orbis terrarum, como en otros mapas del mundo cristiano; El monte Sinaí está representado por un triángulo en el desierto de Arabia.

Limes Transalutanus

Limes Transalutanus

Limes Transalutanus[1] es el nombre moderno dado a un sistema fronterizo fortificado del Imperio Romano, construido en el borde occidental de los bosques de Teleorman en la provincia romana de Dacia, la actual Rumania. La frontera estaba compuesta por una carretera que seguía la frontera, una fortaleza militar, un vallum de tres metros de 10-12 metros de ancho, reforzado con empalizadas de madera en paredes de piedra, y también una zanja. Las cales de Transalutanus tenían 235 km de largo, paralelas al río Olt a una distancia que varía de 5 a 30 km al este del río. La construcción se inició en 107 bajo el mando de Marcius Turbo, y se desarrolló bajo Iulius Severus (120-126); La etapa final de la construcción se realizó bajo Septimio Severo (193–211 dC).

Transalutanus – línea punteada roja

Entre 244–247, bajo Felipe el Árabe, después de los ataques de Carpian y Getae (o Goths , confusión debido a Jordanes), el ejército imperial romano abandonó las limas por un tiempo. Regresaron a las limas, pero cerraron el camino hacia el paso RucărBran, el mismo a partir de la aldea moderna de Băiculeşti.

Más tarde, se construyeron otras limas en la zona, conocida como Brazda lui Novac.

Hoy el vallum es utilizado por el ferrocarril rumano Curtea de ArgeşPiteştiRoşiori de VedeTurnu Măgurele. Hoy, entre 5 y 30 km al este del actual río Olt, Rumanía.

De la web: http://journal.antiquity.ac.uk/projgall/teodor342

Desafíos tecnológicos en el Limes Transalutanus

Eugen S. Teodor y Dan Ştefan

El Reino de Dacia, que comprende el territorio central y occidental de la Rumanía moderna, fue conquistado por el emperador Trajano en la cúspide del poder militar del imperio romano en dos guerras durante los años 101-102 y 105-106 d.C. (ver Oltean 2007: 54-55). Esta conquista tuvo un precio, ya que Trajano había roto la tradición establecida 100 años antes por Augusto de alinear las fronteras del imperio con fronteras naturales como el Rin o el Danubio.

La opinión común sobre el error estratégico de la conquista de Trajano —es decir, ceder la línea protectora del Danubio por una frontera terrestre larga y difícil— es sólo una verdad a medias; la frontera era realmente larga, pero no era tan difícil de retener. La figura 1 ilustra la disposición de la sección de la frontera romana en estudio, integrada dentro del sistema defensivo romano establecido alrededor de Dacia y en la región del Bajo Danubio. Es evidente que, durante el siglo II d.C., la mayor parte de la frontera se ubicaba a lo largo de cadenas montañosas, con pocos pasos militarmente utilizables y completados por largas fronteras fluviales a lo largo de los cursos inferiores de los ríos Mureş y Tisza, y también del río Olt. (Alutus).

La defensa natural que ofrecen las montañas de los Cárpatos se vio reforzada por obras militares únicamente en la frontera noroeste de Dacia, que se extendieron por unos 6 km, con el fin de cerrar la ruta de acceso a Porolissum. Como regla general, las principales fortalezas de los limes se construyeron en valles, mientras que las tierras altas circundantes estaban completamente controladas desde torres de vigilancia, un arreglo ya establecido para una línea de 42 km al suroeste de Porolissum (Gudea 1997).

Figura 1. Mapa de las fronteras romanas y movimientos de tierra en la zona norte del Bajo Danubio. Proyección UTM (35), datum WGS84 para todos los mapas.

La única otra frontera de esta región defendida por extensas obras fue el Limes Transalutanus , en la periferia sureste de la Dacia romana (Napoli 1997: 322–35). Fue construido a finales del siglo II, aunque no como un “doble limes” —haciendo un par con el Limes Alutanus— como se suele suponer, sino más bien como una ruta de comunicación más corta hacia el sureste de Transilvania. Toda la defensa romana en el este de Dacia estaba conectada por un punto vital: el fuerte de Breţcu (Angustia), que bloqueaba el vulnerable paso de Oituz. Angustia era tan importante para el este de Dacia como Porolissumera para la mitad occidental de la provincia. Desafortunadamente, estaba a una distancia considerable del llamado Camino Imperial que era la columna vertebral del sistema de comunicación romano, que conectaba Drobeta (en el Danubio) y Porolissum a través de Tibiscum, Ulpia Traiana Sarmizegetusa, Apulum, Potaissa y Napoca. Ninguna sección de esta carretera estaba a menos de 200 km (en línea recta) de Angustia. Las principales rutas de abastecimiento de este fuerte estratégico desde la frontera oriental se derrumbaron una tras otra (ver Figura 1), y la ruta restante, a lo largo del Alutus, era insoportablemente largo (472 km). Por eso se necesitaba la nueva frontera, el Limes Transalutanus, que acortaba la línea de comunicación en casi un 30%.

Aunque bien conocido desde finales del siglo XIX (Tocilescu 1900), especialmente a través de la excavación de fuertes asociados, el estado actual de la investigación para esta sección de las limas es relativamente pobre. Por ejemplo, solo se ha investigado arqueológicamente una torre de vigilancia (Bogdan Cătăniciu 1977, 343–44), y solo otras tres han establecido ubicaciones. En un libro reciente, el autor actual Eugen S. Teodor (2013: 23-24, 137-38) muestra que las torres relacionadas eran mucho más numerosas y que su modulación a lo largo de las limas era similar a otras fronteras más conocidas.

Figura 2. El Limes Transalutanus al sur del río Argeş. Leyenda como en la Figura 1, con líneas punteadas como rutas inciertas. Clasificación de los segmentos de limas – líneas en transparencia: rojo = dique continuo; azul = ripa (frontera fluvial); verde = borde irregular.

No obstante, el Limes Transalutanus exhibe algunas características peculiares. A lo largo de su sección sur, la frontera recorría 55 km a través del país y estaba marcada por un vallum continuo, o banco y zanja (Figura 2); la sección central era una ripa típica, o frontera fluvial, de 40 km de extensión y protegida por las altas terrazas de los ríos Vedea y Cotmeana; el tramo norte (al sur del río Argeş, que es el límite del área de estudio actual) volvió a seguir una ruta a campo traviesa, extendiéndose 57km, aunque en este tramo el terraplén era discontinuo. (Para la terminología de las fronteras romanas, véase Isaac 1988: esp. 125–33.) La forma de la última sección norte sugiere dos posibles explicaciones: la pared ha sido completamente aplastada por la agricultura, haciéndola invisible; o, el obstáculo artificial nunca existió, probablemente porque era innecesario ya que la frontera estaba naturalmente definida por bosques y pantanos que ya no sobreviven. Otra característica peculiar de esta sección de las limases que durante más de un siglo fue conocido por los arqueólogos rumanos como un “muro sin foso” (ver Napoli 1997: 12, 39-41), pero la ausencia de un foso parece difícil de explicar para un movimiento de tierra que comprende 19m 3 de suelo por cada metro lineal de banco.

Figura 3. Dique romano y caminos antiguos en el área de Valea Mocanului. Arriba: instantánea del UAV de agosto de 2014, mirando al sur; abajo: fotografía tomada en abril de 2013, mirando hacia el norte. Leyenda: 1) vallum; 2) camino paralelo al dique; 3) camino que cruza ambos de los anteriores; 4) fuerte Valea Urlui; 5) ubicación y dirección de la fotografía a continuación.