Este Mundo, a veces insólito

Tecnología

TIROS-1

TIROS-1

TIROS-1 en el “Museo Nacional del Aire y del Espacio.

TIROS-1 (o TIROS-I) fue el primer satélite meteorológico exitoso, y el primero de una serie de satélites TIROS.

Fue diseñado para probar técnicas de captura de imágenes de patrones meteorológicos de la Tierra desde su órbita.

Fue lanzado el 1 de abril de 1960 desde Cabo Cañaveral, Florida, EE. UU.. Aunque operacional por solo 78 días, fue mucho más exitoso que el Vanguard 2, en demostrar que los satélites eran útiles en la investigación de condiciones atmosféricas desde el espacio. El TIROS sirvió como inicio para el programa Nimbus, cuya tecnología y técnicas han sido heredadas por la mayoría de los satélites de observación de la NASA y la NOAA.

Portaba dos cámaras de televisión de 120 kg, con dos grabadoras de cinta magnética, para almacenar fotografías cuando el satélite quedaba incomunicado. La energía eléctrica era suministrada por un conjunto de baterías, cargadas por 9200 paneles fotovoltaicos.

NSSDC ID: 1960-002B

Historia

El primer satélite meteorológico, el Vanguard 2, se lanzó el 17 de febrero de 1959. Se diseñó para que midiese la capa de nubes, pero debido a su eje de rotación pobre no pudo recoger una cantidad importante de datos útiles.

El Planeta Tierra desde TIROS 1: La Primera Imagen de Televisión

Créditos: TIROS Program,NASA

Primera imagen de TV de la Tierra vista desde el espacio.

El satélite de televisión observacional infrarrojo (TIROS, sigla es inglés) 1 fue el primer satélite en observar el clima. Fue lanzado hacia la órbita polar 40 años atrás (1 de Abril de 1960) y estaba equipado con dos cámaras de televisión. TIROS 1 fue operable por sólo 78 días, pero demostró que se podía monitorear las nubes del Planeta Tierra y el clima de otros planetas. Los satélites TIROS comenzaron a trabajar continuamente en 1962 y daban pronósticos exactos del clima mundial y además de alertas. En esta fotografía observamos la primera imagen de televisión del TIROS, tomada desde una altitud de 700 kilómetros. Rudimentario en comparación con sus pares actuales, este satélite representa el comienzo del que será uno de las más importantes aplicaciones de la tecnología espacial.

Vanguard 1

Vanguard 1

Vanguard 1

Organización: Armada de los Estados Unidos

Contratistas: Naval Research Laboratory (NRL)

Tipo de misión: Ciencias de la Tierra

Satélite de: Tierra

Lanzamiento: 17 de marzo de 1958, Cabo Cañaveral

Cohete: Cohete Vanguard

Duración: Desde mayo de 1964

NSSDC ID: 1958-002B

Masa: 1,47 kg

Energía: Solar / Baterías

Elementos orbitales

Excentricidad: 0,1909

Inclinación: 34,25°

Período orbital: 134,2 minutos

Apogeo: 3969 km

Perigeo: 654 km

Órbitas: ~196.000 a día de 16 de marzo de 2008

Web: NSSDC Master Catalog

El Vanguard 1 es el cuarto satélite puesto en órbita en la historia, el segundo por parte de Estados Unidos, y el satélite más antiguo que en la actualidad permanece en órbita ya que sus predecesores (Sputnik 1, Sputnik 2 y Explorer 1) reingresaron en la atmósfera y se destruyeron poco después de su lanzamiento. La última comunicación del Vanguard 1 se recibió en 1964.1

Fue el primer ingenio artificial en el espacio alimentado con energía solar.

Fue diseñado para estudiar la viabilidad de una lanzadera espacial de tres fases, como parte del Proyecto Vanguard, y para realizar diversos experimentos científicos. Entre ellos cabe destacar el hecho de que el Vanguard 1 fue el primer artilugio que hiciera uso de la energía solar en el espacio.2

Cohete Vanguard empleado para poner el Vanguard 1 en órbita.

Precedentes

El Proyecto Vanguard, como indica su propio nombre, pretendía representar la “vanguardia” en la exploración espacial por parte de los Estados Unidos; a pesar de ello, las expectativas no se cumplieron tras un par de fracasos debido a problemas con la lanzadera espacial. El predecesor del Vanguard 1, el Vanguard TV3, fue el primer intento de lanzamiento de un satélite al espacio por parte de los norteamericanos. Era un satélite muy similar al Vanguard 1, pero una explosión en el cohete imposibilitó su puesta en órbita el 6 de diciembre de 1957 (2 meses después del lanzamiento del Sputnik 1). Este fracaso fue un revés para la credibilidad a la industria aeronáutica estadounidense, debido a la expectación que había despertado el lanzamiento y a los éxitos cosechados previamente por los soviéticos.345​ El Proyecto Vanguard fue promovido por tres organizaciones: el Ejército de los Estados Unidos, que controló las estaciones terrestres de rastreo, la Fuerza Aérea de los Estados Unidos, que facilitó el escenario para el lanzamiento del satélite, y el Naval Research Laboratory (NRL), responsable del diseño, desarrollo y verificación tanto del satélite como de la lanzadera espacial.6​ El satélite Vanguard 1 fue la culminación de los esfuerzos del primer programa oficial para el lanzamiento de un satélite espacial, que comenzó en septiembre de 1955.6​ Debido a los fracasos iniciales del programa, tan solo consiguió ser el segundo satélite americano (después del Explorer 1) y el cuarto de la carrera espacial. La aeronave fue una de las formas en las que Estados Unidos participó del Año Geofísico Internacional (AGI), que tuviera lugar entre julio de 1957 y diciembre de 1958.

Implementación

La aeronave es una esfera de aluminio con un peso de 1,47 kg y un diámetro de 16,5 cm. De la esfera salen seis finas antenas de 30 cm de longitud. El satélite contiene dos transmisores: uno de 10 mW de potencia que trabaja a una frecuencia de 108 MHz, banda utilizada por los satélites científicos en el AGI, y que se alimenta mediante una baterías de mercurio; y otro de 5 mW que emite a una frecuencia de 108,03 MHz, lo que permitía el rastreo del satélite vía radio, y que se alimenta mediante 6 células solares fabricadas por Laboratorios Bell.7​ Debido a su reducido espacio, no fue posible contar con una superficie más amplia para los paneles solares. El satélite también se equipó con un contador Geiger (para la lectura de radioactividad), un detector de micrometeoritos y un magnetómetro (para la lectura de señales magnéticas). Los transmisores se usaron principalmente para enviar los datos técnicos registrados, pero también para determinar el contenido total de electrones entre el satélite y diversas estaciones terrestres. También se instalaron dos termistores para medir la temperatura interior de la aeronave durante dieciséis días y así poder determinar la eficacia del sistema de aislamiento térmico con la que el satélite estaba dotado. En el Kansas Cosmosphere and Space Center, situado en Hutchinson (Kansas), se expone una réplica del Vanguard 1.8

Su reducido tamaño en comparación con el Sputnik 1 (de 83,6 kg de peso) fue objeto de burla por parte del dirigente soviético Nikita Jrushchov, denominándolo “el satélite pomelo“, aunque el chiste no tuvo mucho éxito dado que los soviéticos de la época, sometidos a toda clase de privaciones, no conocían esta fruta.910

Datos transmitidos

La única telemetría que se transmitió fue la temperatura interior del satélite. La diferencia de frecuencia entre las dos señales variaba en función de esa temperatura. Durante los primeros días en órbita la frecuencia variaba ligeramente en el momento en que el satélite se exponía u ocultaba respecto al Sol. Esta diferencia de frecuencia era abrupta cuando el único emisor en funcionamiento era el basado en las células solares, llegando a perderse la señal en el momento en que el satélite dejaba de estar expuesto al Sol.7

Los científicos del NRL también incluyeron en el aparato un sistema de rastreo mundial, denominado Minitrack,11​ que sentó las bases para el desarrollo posterior de un sistema de vigilancia que detectase los satélites espías que orbitaran sobre territorio norteamericano.6

Lanzamiento y órbita

Después de suspender el lanzamiento para permitir el paso del Explorer 1 sobre Florida, el cohete de lanzamiento de tres fases colocó al Vanguard 1 en órbita el 17 de marzo de 1958 desde Cabo Cañaveral. La órbita elíptica tuvo una inclinación de 34,25 grados y una distancia de 654 a 3969 km, y completaba su recorrido alrededor de la Tierra en 134,2 minutos. Originalmente se estimó que la aeronave podría orbitar hasta 2000 años, pero se descubrió que la presión de radiación solar y el deterioro orbital en fases de alta actividad solar ocasionan perturbaciones importantes en la altura del apogeo del satélite, lo que provocó el descenso en la esperanza de vida del satélite hasta los 240 años.12

El Vanguard 1 llegó a las 200.000 vueltas en torno a la Tierra aproximadamente en marzo de 2009 (tras alcanzar 196.000 el 16 de marzo de 2008),13​ el equivalente a 10.000 millones de km. Solamente las sondas Pioneer y Voyager han recorrido un trayecto mayor, con la diferencia de que estos dos dispositivos se están alejando gradualmente del Sistema Solar.9

La órbita del satélite se está alterando de forma mínima pero constante. En 1973 el apogeo de la órbita era de 3928 km sobre la superficie de la Tierra y el perigeo de 654 km, mientras que el período orbital fue de 133,8 minutos. En el año 2000 el apogeo descendió a 3839 km y el perigeo a 652 km, reduciéndose el período orbital a 132,8 minutos.6

Objetivos de la misión

El Vanguard 1 cumplió íntegramente con todos los objetivos científicos para los que fue concebido:

  • Fue el primer ingenio artificial en el espacio alimentado con energía solar.
  • Su órbita estable aportó valiosos datos sobre la geometría de la Tierra:
  • Sus instrumentos permitieron conocer la densidad del aire, los rangos de temperaturas y la densidad de micrometeoritos en el espacio y en las capas altas de la atmósfera.

El Vanguard 1 introdujo buena parte de la tecnología que luego fue aplicada a otros programas de satélites de Estados Unidos, especialmente el uso de la energía solar como fuente energética en el espacio.6

Resultados de la misión

El satélite sirvió como fuente de información no solo gracias a los datos que transmitió a la Tierra, sino también debido a la órbita que ha seguido desde que fuera lanzado al espacio.

Resultados a partir de los datos transmitidos

Los datos resultantes de las transmisiones del satélite mostraron que la Tierra no es una esféra perfecta, sino que tiene una asimetría entre los dos polos, que recuerda levemente a la de una pera con el tallo en el Polo Norte. También se hizo uso de estas señales por radio para determinar el contenido total de electrones entre el satélite y las estaciones receptoras terrestres. El transmisor alimentado por baterías transmitió la temperatura interior del satélite, registrada por los termistores, durante aproximadamente dieciséis días y envió señales de rastreo durante veinte.14​ Por su parte, el transmisor alimentado por células solares estuvo operativo durante más de seis años.2​ Las señales se fueron debilitando progresivamente hasta recibirse por última vez en Quito (Ecuador) en mayo de 1964. Desde entonces, la aeronave se viene rastreando ópticamente desde la Tierra por parte de autoridades norteamericanas.6

Resultados a partir de la órbita seguida por el satélite

Debido a su forma simétrica, los científicos usaron el Vanguard 1 para determinar las densidades atmosféricas de las capas altas de la atmósfera (ionosfera y exosfera) en función de la altitud, latitud, estación del año y actividad solar. El satélite se desvía de su órbita programada, acumulando un retraso cada vez mayor debido a la resistencia de la atmósfera residual. Midiendo la frecuencia de la órbita junto con las propiedades aerodinámicas del satélite, se pudieron calcular los parámetros atmosféricos relevantes. Se determinó que las presiones atmosféricas, y con ello la resistencia y pérdida de órbita, eran mayores de lo pensado inicialmente dado que el desvanecimiento gradual de las capas altas de la atmósfera en el espacio era menor de lo estimado.6

El rastreo desde la Tierra también ha permitido recopilar datos sobre los efectos que el Sol y la Luna tienen en la órbita de un satélite alrededor de la Tierra.6​ Gracias al hecho de que los tres satélites del programa Vanguard siguen en órbita con sus propiedades aerodinámicas esencialmente invariables, durante los últimos cincuenta años estos han proporcionado un registro de datos de gran utilidad.

En la sección de enlaces externos Audio pueden oírse grabaciones realizadas por un receptor National NC-300 Amateur Band precedido por un conversor VHF. Las grabaciones se hicieron con un receptor BFO para hacerlas audibles.7

50º aniversario

El Vanguard 1 es el artefacto más viejo en el espacio tras haber cumplido 50 años en órbita alrededor de la Tierra el 17 de marzo de 2008. El Naval Research Laboratory conmemoró este evento con un encuentro el mismo día del aniversario.61516​ Dicho encuentro culminó con una simulación de la trayectoria del satélite cuando pasó por el área de la órbita visible desde Washington D. C.

Hay proyectos de capital privado con intención de recuperar el Vanguard 1 y traerlo de vuelta a la Tierra por diferentes motivos: su valor histórico, que lo convierte en una pieza codiciada, la demostración de capacidad de la industria aeronáutica en órbita que supondría cumplir con esta misión, y la valiosa fuente de información sobre las consecuencias a largo plazo de la presencia de un satélite en el espacio.10​ Cabe destacar que como precedente, en 1984 el transbordador espacial Discovery recuperó dos satélites de comunicaciones averiados.9​ Dado que el Vanguard 1, legalmente, no es basura espacial, sino que sigue siendo propiedad del Gobierno de los Estados Unidos, un rescate de la aeronave tendría que acordarse previamente con el gobierno norteamericano.10

Vanguard 1 fue el cuarto satélite lanzado, después de ser derrotado por Sputnik 1, 2 y Explorer 1, también sufrió múltiples fallas de lanzamiento de alto perfil. Sin embargo, 60 años después todavía está en órbita mucho después de que estos satélites anteriores hayan vuelto a la Tierra.

Una ilustración de las variaciones en el geoide a partir de un esferoide oblato simple derivado de las primeras observaciones satelitales. (NASA)

 

 

 

 

 

 

 

 

 

 

 

Diagrama que muestra los principales componentes del “satélite mínimo” de Vanguard utilizado en los vuelos de prueba iniciales del programa. (NASA)

 

 

 

 

 

 

Un diagrama del “satélite estándar” de Vanguard como se muestra en la Patente de los Estados Unidos Núm. 2.835.548. (USPTO)

 

 

 

 

 

 

 

Se muestra un modelo de ingeniería de Vanguard 1 con sus componentes internos. (NRL)

Pioneer 5

Pioneer 5

Pioneer 5

Organización: NASA

Estado: Inactivo

Fecha de lanzamiento: 11 de marzo de 1960

Vehículo de lanzamiento: Thor

Sitio de lanzamiento: Cabo Cañaveral

Vida útil: 106 días

Aplicación: Estudio del espacio interplanetario

Masa: 43 kg

NSSDC ID: 1960-001A

Equipamiento

Tasa de datos: 1, 8 o 64 bps

Pioneer 5, también conocido como 1960 Alpha 1, Pioneer P-2 y Thor Able 4, fue una sonda espacial de la NASA lanzada el 11 de marzo de 1960 mediante un cohete Thor desde Cabo Cañaveral.

La misión de Pioneer 5 fue realizar la primera cartografia del campo magnético interplanetario entre Venus y la Tierra. También realizó mediciones de las partículas procedentes de erupciones solares y de la ionización de la región interplanetaria.

Fue la primera nave, lanzada a estudiar, diversos parámetros interplanetarios, propios o relacionados con el Sol.

La nave estaba estabilizada mediante giro, funcionó durante 106 días y llegó a comunicarse con la Tierra desde una distancia de 22,5 millones de kilómetros, un récord en su día. La velocidad de transmisión podía ser de 1, 8 o 64 bps, según la distancia a la Tierra y el tamaño de la antena receptora. Las limitaciones de energía debido al limitado tamaño de los paneles solares impedían que la nave transmitiese de manera continua. Cada día se programaban cuatro sesiones de comunicación de unos 25 minutos de duración, con aumentos ocasionales de la duración en momentos importantes. La mayor parte de los datos se recibieron en las estaciones de Mánchester y Hawaii. La última transmisión tuvo lugar el 26 de junio de 1960.

Metas

Pioneer 5 fue enviado a una órbita heliocéntrica entre la Tierra y Venus como una prueba de tecnología. También llevó equipos para confirmar las teorías de los científicos de un campo magnético interplanetario.

Logros

La nave espacial demostró ser una prueba exitosa de tecnologías que llevarían a misiones posteriores en la serie, como los Pioneros 10 y 11, en las profundidades del sistema solar exterior. También confirmó la existencia del campo magnético interplanetario.

A fondo

Lanzado en una trayectoria orbital solar directa, Pioneer 5 alcanzó con éxito la órbita heliocéntrica entre la Tierra y Venus para demostrar las tecnologías del espacio profundo y proporcionar el primer mapa del campo magnético interplanetario.

Crédito de la imagen: NASA / JPL

La nave espacial había sido originalmente pensada para un sobrevuelo de Venus, pero la misión se cambió a un sobrevuelo solar. Pioneer 5 llevó Telebit, el primer sistema de telemetría digital utilizado operativamente en una nave espacial estadounidense; primero se probó en Explorer 6. El sistema usó un transmisor de 5 vatios o uno de 150 vatios, con un transmisor de 5 vatios actuando como conductor. Las velocidades de información variaron de 64 a 8 a 1 bit por segundo.

Los controladores mantuvieron contacto con Pioneer 5 hasta el 26 de junio de 1960, hasta una distancia récord de 22.5 millones de millas (36.2 millones de kilómetros) desde la Tierra (más tarde superada por Mariner 2). La sonda, utilizando su conjunto de instrumentos científicos de 40 libras (18,1 kilogramos), confirmó la existencia de campos magnéticos interplanetarios previamente conjeturados.

Instrumentos de naves espaciales:

  1. Magnetómetro
  2. cámara de ionización
  3. Tubo Geiger-Mueller
  4. Espectrómetro de momento micrometeoroide
  5. indicador de aspecto de célula fotoeléctrica
  6. contador telescopio proporcional

Referencias seleccionadas

Siddiqi, Asif A. Crónica de espacio profundo: una cronología del espacio profundo y sondas planetarias 1958-2000 , NASA, 2002.

Luna 2

Luna 2

La sonda espacial Luna 2.

El Luna 2 (o Lunik 2) (en ruso: Луна-2) fue la segunda sonda espacial del programa Luna de la Unión Soviética lanzada en dirección a la Luna, y fue la primera sonda humana que impactó en su superficie. La sonda fue lanzada el 12 de septiembre de 1959 desde el Cosmódromo de Baikonur y llegó a la luna el 13 de septiembre del mismo año a la zona conocida como Mare Imbrium.

Esta sonda, de 390 kg de peso y un diámetro de 0.9 m, estaba destinada a estrellarse con la Luna, lográndolo con éxito en la posición 29.1, -0Coordenadas: 29.1, -0, correspondiente a la región denominada Palus Putredinis,1​ el 14 de septiembre de 1959, a las 21:02h;1​ dos días después de su lanzamiento mediante un cohete Vostok.

Fue la primera misión lunar exitosa. El Luna 2 en el diseño era similar al Luna 1, una sonda esférica con antenas y partes de los instrumentos que sobresalían. La instrumentación también era semejante, incluyendo los mostradores de centelleo, los contadores Geiger, el magnetómetro, los detectores Cherenkov, y los detectores de micrometeoritos. No había ningún sistema de propulsión en el Luna 2.

Fue la primera nave en llegar a la superficie de la Luna.

El 12 de septiembre de 1959, a las 8:40 horas el cohete Vostok-L, que había salido del cosmódromo de Baikonur, envió la sonda espacial Luna 2 (también conocido como Lunik 2) hacia la Luna. Al día siguiente la sonda se convirtió en el primer dispositivo hecho por el hombre en alcanzar la Luna, tras un duro aterrizaje.

Luna 2 llevaba un banderín con la insignia soviética. Observadores soviéticos y extranjeros registraron el impacto, pero posteriormente se perdió la señal de radio.

Lo más probable es que Lunik y el banderín se destruyeran porque chocó con la superficie lunar a una velocidad aproximada de 12.000 km/h.

El 15 de septiembre de 1959 Nikita Jrushchov entregó al presidente estadounidense Dwight Eisenhower una copia del banderín como regalo, actualmente se encuentra en la Biblioteca Museo Presidencial Eisenhower en el estado de Kansas.

Conejo

Conejo

Marfusha en 1959, el primer conejo en ir al Espacio

El 2 de  julio de  1959 el perro  Otvazhnaya (“El Valiente”) y el conejo, Marfusha (“Marta”)  hicieron un vuelo en el cohete  R-2A. También le acompañaban en el vuelo, otro perro, llamado  Snezhinka. El lanzamiento se realizó con el cohete  R-2A, un cohete ruso  hecho a partir del  German V-2. Otvazhnaya  hizo 5 vuelos más desde  1959 a  1960.

R-2 fue el nombre de un misil balístico soviético desarrollado entre 1947 y 1953, casi en paralelo con el misil R-1, que fue su predecesor.

Able y Baker

Able

El 28 de mayo de 1959, Able (“Capaz”) un macaco rhesus y Miss Baker una mono ardilla, se convirtieron en los primeros seres vivientes en regresar exitosamente a la tierra después de viajar al espacio viajando a bordo de un cohete Júpiter AM-18. Viajaron excediendo los 16.000 km/h y soportando una gravedad de 38 g (373 m/s²). Able murió el 1 de junio de 1959 mientras se le practicaba una cirugía para extirparle un electrodo infectado, a causa de la anestesia. Miss Baker murió el 29 de noviembre de 1984 a la edad de 27 años y fue sepultada en los terrenos del Space and Rocket Center ubicado en Huntsville, Alabama. Able fue disecado, y actualmente es exhibido en el Instituto Smithsoniano del Aire y Museo Espacial. Sus nombres fueron tomados del alfabeto fonético conjunto Ejército/Armada.

La vida humana de las primeras monas astronautas

Un investigador relata cómo «Able» y «Baker», dos pequeñas monas enviadas al espacio, fueron tratadas a su regreso como si fueran personas con fines publicitarios. Una fue operada con las mismas atenciones que recibe una celebridad y a la otra se le buscó un «marido»

El 28 de mayo de 1959, dos monas llamadas «Able» y «Baker» se convirtieron en los primeros primates no humanos recuperados con éxito de un vuelo espacial. Antes y durante el experimento, las monas fueron tratadas como cobayas, con el objetivo de conocer los cambios anatómicos que sufrían sin gravedad y prever las tensiones físicas a las que podrían enfrentarse los futuros astronautas. Sin embargo, después del vuelo, algo cambió. «Able» y «Baker» dejaron de ser solo animalitos y repentinamente fueron tratadas como personas en un curioso proceso de humanización en el que tomaron parte médicos militares, medios de comunicación y el público en general. Así lo explica Jordan Bimm, investigador de la Universidad de York (Canadá) en un interesante estudio que ha presentado en el Congreso Internacional de Historia de la Ciencia, Tecnología y Medicina (iCHSTM) que se celebra estos días en la Universidad de Manchester. A su juicio, las monas astronautas fueron revestidas con arquetipos humanos específicos con fines de relaciones públicas y para ocultar la «violencia» que supone someter a un animal a un experimento semejante.

Sin embargo, «Able» murió de forma prematura poco después, el 1 de junio de 1959, mientras se le practicaba una cirugía para removerle un electrodo infectado. Según Bimm, la mona «fue antropomorfizada por médicos y periodistas científicos que de pronto la trataban como si fuera un importante paciente humano». Después de su muerte, «Able» fue transformada de nuevo. Su cuerpo fue preservado, y actualmente es exhibido en el Museo del Aire y el Espacio del Instituto Smithsoniano en Washington, como si fuera «la caricatura masculina» de un astronauta. Además, aparece como personaje en la película «Una noche en el museo 2: La Batalla del Smithsonian» (2009) como un personaje.

«Baker» sobrevivió mucho más tiempo en cautiverio. Sus cuidadores la trataban como una ama de casa americana, la llamaron «Miss Baker» y deseaban que se «asentara y formara una familia». Incluso llegaron a buscarle un «marido» y le organizaron un «matrimonio»… con un mono macho, claro.

Celebridades espaciales

De distintas formas, las dos monas se convirtieron, según Bimm, en celebridades que representaban la exploración espacial americana. Además, la controvertida muerte de Abble dio lugar a «amargas fricciones entre médicos sobre el Ejército y la Armada sobre las mejores prácticas». El artículo, continúa el autor, pone de relieve cómo esta forma de «humanizar» a un animal revela suposiciones profundamente arraigadas sobre los roles humanos durante la guerra fría, y, en general, una reflexión crítica sobre por qué los animales utilizados en experimentos médicos de alto nivel a menudo llegan a ser considerados como «más humanos» después.

«Sugiero que este antropomorfismo de ciertos monos en la medicina espacial estadounidense durante la guerra fría era atractiva porque enmascaraba la violencia y la falta de opciones a las que estos animales estaban sujetos, y porque daba una imagen natural a los impulsos políticos y militares que daban alas a la primera exploración del espacio», concluye el investigador.

La mona «Miss Baker», con un modelo de cohete Jupiter AM-18 – NA

 

Mechta – Luna 1

Mechta – Luna 1

Mechta

La sonda espacial Mechta

Información general

Organización: URSS

Fecha de lanzamiento: 2 de enero de 1959 a las 16:41:21 UTC

Aplicación: Sonda lunar

Configuración: Esférica

Masa: 361 Kg

Propulsión: Sin Propulsión

Equipo: OKB-1

COSPAR: 1959-012A

Elementos orbitales

Tipo de órbita: Translunar

Excentricidad: 0.14767

Inclinación: 0.01º

Período orbital: 450 d

Apoastro: 1.315 AU

Periastro: 0.9766 AU

Mechta (en ruso: Мечта que significa ‘Sueño’) fue la primera sonda espacial en alcanzar las inmediaciones de la Luna y la primera de una larga y exitosa serie soviética (Programa Luna) de sondas interplanetarias con dirección a nuestro satélite.

En 1963 la sonda fue renombrada como Luna 1, aunque en occidente se había hecho popular con el nombre de Lunik 1.

Sucesos

El 2 de enero de 1959, el Luna 1 fue la primera nave en alcanzar la velocidad de escape de la Tierra. La sonda se separó de la tercera etapa del cohete (1472 kg de peso, 5,2 m de longitud y 2,4 de diámetro) y puso rumbo a la Luna.

El 3 de enero, a una distancia de 113 000 km de la Tierra, la sonda soltó una nube de gas de sodio con un peso total de 1 kg. La nave dejó tras de si una estela de color naranja que fue visible desde el océano Índico con el brillo de una estrella de sexta magnitud (casi invisible a simple vista). De esta forma los técnicos pudieron seguir durante un tiempo el rastro de la nave y observar el comportamiento de un gas en el vacío. La sonda pasó a 5995 kilómetros de la superficie de la Luna, el 4 de enero, después de 34 horas de vuelo, convirtiéndose en el primer satélite artificial que actualmente gira entre las órbitas de la Tierra y Marte. No impactó en la Luna (lo que estaba planeado) debido a un fallo en el sistema de control del cohete que la lanzó.

Datos y características

La sonda era una esfera de 80 cm de diámetro, construida de magnesio y aluminio, que pesaba 361 kg. La alimentación eléctrica provenía de baterías de plata-zinc y mercurio que alimentaron los equipos del Luna 1 durante tres días. La comunicación era realizada por 5 antenas que emergían en la parte superior de la esfera, con frecuencias de 183,6 MHz y otras 2 que estaban en la parte inferior de la esfera con frecuencias de 19,993 MHz. La Luna 1 no poseía ningún sistema de propulsión. A bordo de la esfera había escudos, banderines, e insignias soviéticas. La sonda Luna 1 debía estrellarse contra la Luna, pero no lo hizo, pasando a una distancia de 5995 km de la superficie lunar, el 4 de enero, después de 34 horas de viaje.

En la esfera había instrumentos de radio, sistemas de telemetría, un transmisor de seguimiento, cinco conjuntos diferentes de dispositivos científicos para estudiar el espacio interplanetario, incluyendo un magnetómetro, un contador Geiger, un contador de destellos (para medir la intensidad de radiaciones ionizantes), un detector de micrometeoritos, y otros equipos. Por toda la esfera aparecían unas protuberancias permitiendo a los instrumentos el contacto con el exterior. Luna 1 llevaba también un almacén con 1 kg de gas de sodio, que soltó según se ha referido más arriba para observar su comportamiento en el vacío.

La nave proporcionó nuevos datos hasta entonces desconocidos sobre el cinturón de radiación que rodea nuestro planeta, permitió descubrir que la Luna no tiene campo magnético y detectó el viento solar que emana del sol y recorre el sistema solar.

Ratón

Ratón

El ratón espacial (el primero) fue a bordo del Albert V, la primera vez que el animal de esta saga no era un mono. También fue a bordo de un cohete V-2.

El 31 de agosto de 1958, Estados Unidos lanzó un ratón al espacio (a 137 km de altura) a bordo de un misil alemán V-2 (denominado «vuelo Albert V», que ―a diferencia de los anteriores vuelos Albert― no llevaba un mono).

Desafortunadamente, el sistema de recuperación de paracaídas falló y el ratón murió en el impacto.

Estados Unidos también envió ratones en tres cohetes de pruebas de reingreso durante el proyecto “Ratones en el poder ” en 1958 (los tres murieron). Además, catorce ratones más perecieron en un cohete a Júpiter después de que despegó de Cabo Cañaveral en 1959.

Posteriormente se enviaron más ratones a bordo de naves, aunque ninguna de ellas llegó a alcanzar la altura técnica para considerarse un vuelo espacial (100 km).

El ratón espacial, 1950

Corrió la misma suerte que Albert II, pues también falló el paracaídas. Durante los 50 se mandaron bastantes ratones al espacio.

 

Tsygan y Dezik

Tsygan y Dezik, 1951

Foto: Tsygan y Dezik 

Los dos primeros perros en estas misiones suborbitales, fueron Де́зик и Цыга́н (Dezik y Tsygan “gitana”), lanzados el 22 de julio de 1951 en un cohete R-1V. La misión fue un éxito y pudieron ser rescatados. Ambos canes sobrevivieron sin herida alguna después de viajar a una altitud máxima de 110 km.

Los perros Dezik y Tsygan en la cabina del cohete antes de su lanzamiento.

Una semana después, el 29 de julio de 1955, un nuevo lanzamiento, esta vez en un cohete R-1B, fue efectuado con los perros Де́зик (Dezik) que repetía vuelo y otro animal, Лиса (Lisa, “Zorro”). Sin embargo, una vez se hizo saltar la cabina, el paracaídas falló al desplegarse y ambos perros murieron. Tsygan, que sobrevivió al no viajar en este vuelo, fue adoptada por uno de los científicos, A. Blagonravov.

Cápsula espacial original en la que viajaban los perros en sus viajes orbitales y suborbitales.

El honor de ser los primeros soviéticos en llegar al Espacio, aunque no orbitar, le corresponde a los perros Tsygan y Dezik en 1951. De hecho, éstos fueron los primeros organismos vivos superiores que fueron recuperados con éxito tras el viaje. Pero la hegemonía de los perros espaciales fue rota por Marfusa en 1959, el primer conejo en ir al Espacio. A partir de ahí, la Unión Soviética hizo volar ratones, monos (como ya hacía EE UU), ranas, e incluso cerdos de Guinea.

Cohete V2

Cohete V2

Primer vuelo suborbital no tripulado

Septiembre 1944

Primera bomba V2 en caer sobre Londres en marco de la Segunda Guerra Mundial. Primer misil balístico de combate de largo alcance del mundo y el primer artefacto humano conocido que hizo un vuelo suborbital

Lanzamiento de un V2 en 1943.

Tipo: Misil balístico

País de origen: Alemania nazi

Historia de servicio

En servicio: 8 de septiembre de 194419 de septiembre de 1952

 Operadores

Alemania nazi
Estados Unidos (posguerra)
Unión Soviética (posguerra)

 Historia de producción

Fabricante: Mittelwerk GmbH (desarrollado por el Centro de Investigación Peenemünde)

Costo unitario: 100 000 RM (enero de 1944), 50 000 RM (marzo de 1945)1

Producida: 16 de marzo de 1942

Especificaciones

Peso: 12 500 kg

Longitud: 14 m

Diámetro: 1,65 m

Alcance efectivo: 320 km

Explosivo: 980 kg de Amatol

Envergadura: 3,56 m

Propulsor: 3 810 kg de 75 % de etanol y 25 % de agua + 4 910 kg de oxígeno líquido

Altitud

88 km de altitud máxima en trayectoria de largo alcance, 206 km de altitud máxima en lanzamiento: vertical.

Velocidad máxima: 1 600 m/s (5 760 km/h); en impacto: 800 m/s (2 880 km/h)

Sistema de guía

Giróscopos para control de actitud, Giróscopo acelerómetro tipo Müller de péndulo para cortar el motor en la mayor parte de los cohetes (10 % de los cohetes de Mittelwerk usaron un haz de guía)2

 Plataforma de lanzamiento: Móvil (Meillerwagen)

El cohete V2 (del alemán: Vergeltungswaffe 2, «arma de represalia 2»), nombre técnico A4 (Aggregat 4), fue un misil balístico desarrollado a principios de la Segunda Guerra Mundial en Alemania, empleado específicamente contra Bélgica y lugares del sureste de Inglaterra. Este cohete fue el primer misil balístico de combate3​ de largo alcance del mundo4​ y el primer artefacto humano conocido que hizo un vuelo suborbital.5​ Fue el progenitor de todos los cohetes modernos,6​ incluyendo los utilizados por los programas espaciales de Estados Unidos y de la Unión Soviética, que tuvieron acceso a los científicos y diseños alemanes a través de la Operación Paperclip y la Operación Osoaviakhim respectivamente.7

La Wehrmacht alemana lanzó en torno a 3000 cohetes militares V2 contra objetivos Aliados durante la guerra, principalmente Londres y posteriormente Amberes, dando por resultado la muerte de un número estimado de 7250 personas, tanto civiles como militares.[cita requerida] El arma fue presentada por la propaganda nazi como una venganza por los bombardeos sobre las ciudades alemanas desde 1942 hasta el final de la guerra.[cita requerida]

Descripción

Diseñados por Wernher von Braun, muchos de estos misiles fueron disparados desde las costas francesas hacia Londres con el fin de provocar la mayor devastación posible, así como minar la moral del enemigo. Sucesor del V1 (que era un misil de crucero), este diseño no vio la luz hasta muy avanzada la guerra, por lo que tuvo poco impacto real en ésta.

El V2 fue uno de los avances más relevantes en tecnología armamentística logrados hasta ese momento. Sin embargo, no pudo cambiar el curso de la guerra, que ya había tomado, en 1944, un giro decisivo hacia la victoria aliada.

Antecedentes

Los experimentos con cohetes de combustible líquido comenzaron en Alemania en los años 1920, promovidos por la sociedad para vuelos espaciales «Verein für Raumschiffahrt» (o «VFR»), entre cuyos miembros se hallaba el joven Wernher von Braun (1912-1977).

Posteriormente, en 1934, estos trabajos, originalmente civiles, se transforman en actividad oficial financiada y controlada por la Wehrmacht bajo la dirección del capitán, luego general, Walter Dornberger, otorgándoseles unas instalaciones de investigación en Kummersdorf, Brandeburgo. En 1937 el equipo se trasladó a Peenemünde, en la costa báltica, con Dornberger como jefe y Von Braun como director técnico.

Estos científicos buscaban incrementar la eficacia de los cohetes y convertirlos en armas viables. Con este objeto se realizaron una serie de vehículos de prueba propulsados por alcohol y oxígeno líquido (entre los que se incluyen el «Aggregat Eins» o A1, el A2 y el A3), así como exhaustivas pruebas estáticas.

V2

Walter Dornberger, segundo por la izquierda, y Wernher von Braun, cuarto, entre otras personas, después de su rendición a tropas aliadas en 1945.

Hacia 1935, el proyecto principal era la construcción de un gran cohete de artillería, para el que se escogió la denominación de «A4». Para lograrlo se probarían las características del diseño y diversas técnicas de control en un modelo a escala: el «A5». De esta forma, a fines de 1941 el A4 estuvo terminado y el 13 de junio de 1942 se probó el primer ejemplar. Pero no logró levantar el vuelo, cayó sobre un costado y explotó. El segundo ejemplar, lanzado el 16 de agosto de 1942, voló 45 segundos hasta que comenzó a oscilar y finalmente se partió en el aire. El tercer misil realizó el 3 de octubre del mismo año el primer vuelo completo exitoso, alcanzando una altura máxima de 5 km y cayendo a una distancia de 190 km.

El canciller alemán Adolf Hitler, entusiasmado por el éxito, ordenó la producción masiva del A4 con el nombre de «Vergeltungswaffe 2» (arma de represalia número 2) o simplemente «V2», destinado a atacar Londres y el suelo británico porque no era efectivo contra objetivos militares debido a su poca precisión.

Características

1-Ojiva
2-Control automático del giróscopo
3- Haz de guía y receptores de radio de mando
4-Depósito de la mezcla del alcohol-agua
5-Cuerpo del cohete
6-Depósito de oxígeno líquido
7-Tanque del peróxido de hidrógeno
8-Botellas con nitrógeno a presión
9-Compartimiento de descomposicón del peróxido de hidrógeno
10-Turbobomba de los propergoles
11-Casquillos del quemador de oxígeno-alcohol
12-Marco de empuje
13-Cámara de combustión del cohete (cubierta externa)
14-Aleta
15-Entradas de alcohol
16-Deflector del chorro
17-Alerón

El sistema de guía era simple: una vez que el cohete se hallaba en posición de lanzamiento, la plancha superior de la plataforma de lanzamiento se giraba hasta que el misil se alineaba exactamente en acimut con la dirección del objetivo. Después del lanzamiento, dos giróscopos Lev-3 y acelerómetros integrados (que componían la guía inercial del ingenio) inclinaban el cuerpo del misil en el ángulo necesario y cortaban el motor principal a la velocidad precisa, de forma que su trayectoria balística asegurase alcanzar al objetivo. El apogeo se situaba normalmente en los 96 km (que entonces representaba la mayor altura alcanzada por cualquier objeto construido por el hombre).

Al ascender, los A4 se inclinaban lentamente hasta alcanzar un ángulo de 40° o 45° en relación a la vertical, dependiendo de la distancia a que se hallara el blanco. Luego, una vez establecida la trayectoria al cabo de 68 segundos, se cortaba el motor. El tiempo total de vuelo desde el despegue hasta la caída era de unos cuatro minutos.

El control se realizaba mediante cuatro deflectores de vectorización de flujos (aspas) de grafito situados en el chorro de gas, que le daban estabilidad al misil, y mediante pequeños timones aerodinámicos instalados en las cuatro grandes aletas, que eran efectivos una vez alcanzada gran velocidad.

 Otro diseño futurista fue el denominado A9/A10, que preveía un misil de dos fases, del doble de tamaño del A4, que tendría un alcance de 4800 km y podría haber sido el primer misil balístico intercontinental.

Posguerra

Misil V2 en el museo de Peenemünde en Usedom, Alemania.

Operación Backfire V-2 en Meillerwagen (S.I. Negativo #76-2755)

Terminada la guerra, los V2 capturados por los aliados se sometieron a exhaustivas pruebas.8​ Los científicos alemanes relacionados con la tecnología de misiles y cohetes eran los mejores de la época. Por ello, tras la Segunda Guerra Mundial, los Estados Unidos y la URSS se esforzaron por conseguir la mayor cantidad de estos especialistas, siendo empleados para explorar y sondear la atmósfera superior. El PGM-11 Redstone es un descendiente directo del V-2.9​ Braun y su equipo crearon el cohete Saturno V de la NASA, que llevó al hombre a la Luna en 1969 con el Programa Apolo. Los soviéticos también emplearon personal alemán pero fueron repatriados en los años 50 y el desarrollo posterior fue con personal autóctono. Empezaron realizando una copia, el R-1. El misil soviético Scud está basado directamente en el V-2.[cita requerida]