Este Mundo, a veces insólito

Calendario
diciembre 2024
L M X J V S D
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

NuSTAR

Rate this post

Logotipo de la misión NuSTAR.nustar1

NuSTAR (telescopio espectroscópico nuclear conjunto) o Nuclear Spectroscopic Telescope Array es un telescopio espacial de rayos X telescopio que utiliza un telescopio Wolter para enfocar la energía de los rayos X a partir de fuentes astrofísicas, especialmente para espectroscopia nuclear, y opera en el rango de 5 a 80 keV.1 Se trata de la undécima misión de la NASA del programa Small Explorer de satélites (SMEX-11) y la primera basada en el espacio directo de imágenes de telescopio de rayos X con energías superiores a los del Observatorio Chandra de Rayos X y XMM-Newton. Fue lanzado con éxito el 13 de junio de 2012, habiendo sido previamente retrasado del 21 de marzo debido a problemas de software con el vehículo de lanzamiento.2 3

Sus objetivos principales son llevar a cabo un estudio profundo de los agujeros negros mil millones de veces más masivos que nuestro Sol, comprender cómo las partículnustar2as se aceleran dentro de una fracción de un punto porcentual por debajo de la velocidad de la luz en las galaxias activas, y entender cómo los elementos se crean en las explosiones de estrellas masivas, que se llaman los remanentes de supernovas.

Historia

El predecesor del NuSTAR, el Telescopio de enfoque de Alta Energía (HEFT), era una versión que se colocaba en un globo que lleva a los telescopios y detectores construidos con tecnologías similares. En febrero de 2003, la NASA publicó un Anuncio del Programa Explorador de Oportunidades. En respuesta, NuSTAR se presentó a la NASA en mayo, como una de las 36 propuestas de misión que compiten.4 En noviembre, la NASA seleccionó NuSTAR y otras cuatro propuestas para un estudio de ejecución de cinco meses de factibilidad.

En enero de 2005, la NASA seleccionó al NuSTAR para el vuelo en espera de un estudio de factibilidad de un año.5 El programa fue cancelado en febrero de 2006 como resultado de los recortes presupuestarios a la ciencia. El 21 de septiembre de 2007 se anunció que el programa se había reiniciado, con un lanzamiento previsto en agosto de 2011, aunque más tarde se retrasó hasta junio de 2012.3 6 7 8

Lanzamiento del satélite NuSTAR (Pegasus-XL)

Daniel Marín 13 jun 12

La empresa Orbital Sciences Corporation ha lanzado hoy miércoles 13 de junio de 2012 a las 16:00 UTC un cohete Pegasus-XL (vehículo M48 “Dalton”) desde el avión Lockheed L-1011 “Stargazer” mientras sobrevolaba el océano Pacífico. La carga era el observatorio espacial de rayos X NuSTAR de la NASA. El avión L-1011 despegó desde la base militar Ronald Reagan para pruebas de defensa de misiles balísticos, situada en el atolón de Kwajalein. Éste ha sido el 41º lanzamiento de un cohete Pegasus y el 31º de un Pegasus-XL. La órbita inicial fue de 632,8 x 626,9 kilómetros con 6,024º de inclinación.

NuSTAR (Nuclear Spectroscopic Telescope Array) o SMEX 11 es un pequeño telescopio de rayos X de la NASA que forma parte del programa SMEX (Small Explorer) de nustar3misiones de bajo coste. Tiene una masa de 350 kg y estará situado en una órbita de 575 x 600 kilómetros de altura y 6º de inclinación. Su vida útil, limitada por la altura orbital, se estima en siete años, aunque la misión primaria durará solamente dos años. Sus dimensiones son de 1,2 x 2,2 metros al lanzamiento y 1,2 x 10,9 metros una vez en el espacio. Los paneles solares pueden generar 729 W de potencia. NuSTAR usa la plataforma LEOStar-2 de Orbital, con unas dimensiones de 1,0 x 1,1 x 0,5 metros. La misión ha salido por unos 170 millones de dólares.

Partes de NuSTAR (configuración de lanzamiento) (NASA).

A diferencia de otros observatorios espaciales de rayos X más caros y complejos -como XMM Newton o Chandra-, NuSTAR será capaz de detectar rayos X muy energéticos, en el rango de energías 6-79 keV. Hasta ahora, la mayor parte de telescopios de rayos X solamente alcanzaban los 15 keV. Por lo tanto, los objetivos de NuSTAR serán los sucesos más energéticos del Universo, provocados por agujeros negros, restos de supernovas, cuásares, estrellas de neutrones, etc.nustar4

NuSTAR está equipado con dos telescopios de rayos X de incidencia rasante con un diseño estándar Wolter-I (similar al usado en el XMM Newton de la ESA). Los telescopios tienen una longitud de 0,45 metros, un radio de 0,191 metros y una distancia focal de 10 metros. Debido a su alto poder de penetración, los rayos X no pueden ser reflejados mediante espejos convencionales, así que para poder enfocarlos hacia los instrumentos se emplean dos conjuntos de 133 paraboloides e hiperboloides concéntricos de 0,2 milímetros de espesor cada uno. Los rayos X inciden primero de forma casi paralela sobre las superficies parabólicas y luego son reflejados hacia las superficies hiperbólicas situadas detrás, las cuales consiguen enfocar los rayos X en los instrumentos. El alto número de superficies concéntricas -133- frente a las solo cuatro empleadas por el telescopio Chandra se debe a la necesidad de aumentar la superficie útil del telescopio para los rayos X más energéticos y, con ella, su sensibilidad.nustar5

 

Esquema del telescopio de rayos X de incidencia rasante XMM Newton (NASA).

La óptica de uno de los dos telescopios de NuSTAR (NASA).nustar6

Tan importante es la forma de los “espejos” como el material con el que están recubiertos. Otros telescopios de rayos X como XMM Newton o Chandra han empleado platino, oro o iridio para mejorar la reflectividad de las superficies. Sin embargo, estos materiales absorben los rayos X más energéticos, así que no podían ser usados en esta misión. NuSTAR emplea sin embargo un sistema multicapa con 200 pares de capas, cada una de ellas con un material denso (tungsteno o platino) y otro poco denso (silicio o carbono) que crean la reflectividad necesaria en todo el rango energético.nustar7

Para lograr un diseño compacto al lanzamiento que sea compatible con la elevada focal de un telescopio de rayos X, NuSTAR usa un mástil desplegable construido por ATK-Goleta basado en el empleado por las antenas de radar de la misión de cartografía radar (SRTM) llevada a cabo durante la STS-99 Endeavour en el año 2000. Para asegurar la correcta alineación entre el mástil y los instrumentos, NuSTAR usará dos láseres que miden la desviación de los telescopios. El despliegue tendrá lugar una semana después del lanzamiento y durará 25 minutos.

Mástil en posición plegada (NASA).

nustar8El instrumento principal de NuSTAR está formado por dos detectores de rayos X situados en el foco de cada telescopio. Cada uno consta de 32 x 32 píxeles de cadmio-zinc-teluro (CdZnTe o CZT). Las señales de los dos detectores se combinarán en Tierra para formar una única imagen. Con el fin de evitar que los rayos cósmicos o los rayos X que no procedan de los telescopios puedan llegar a los detectores, éstos están rodeados por un escudo de ioduro de cesio. Los dnustar9etectores tienen un campo de visión de 13×13 minutos de arco, una resolución angular de 50 segundos de arco y una resolución espectral de 600 eV a 6 keV y 1,2 keV a 60 keV.

Simulación de cómo verá el centro galáctico NuSTAR (abajo) comparado con el telescopio de rayos gamma Integral (NASA).

nustar12

Comparación entre la sensibilidad energética de NuSTAR y otros telescopios de rayos X (NASA).

 

Detectores de NuSTAR (NASA).

nustar10

Escudo de los detectores (NASA).nustar11

 

En un principio, NuSTAR debía haber tenido tres telescopios en vez de dos, pero se decidió reducir el número de unidades para evitar una posible cancelación. De hecho, entre febrero de 2006 y septiembre de 2007 la misión estuvo congelada esperando una cancelación definitiva. La fecha original del lanzamiento era 2011. El telescopio GEMS, otra misión parecida del programa SMEX, no ha tenido tanta suerte y fue cancelada el mes pasado.

Pegasus-XL

El Pegasus-XL es un cohete de tres etapas de combustible sólido lanzado desde un avión Lockheed L-1011 TriStar. Puede situar hasta 475 kg en LEO o 175 kg en una órbita de transferencia geoestacionaria (GTO). El cohete tiene una masa de 23,269 toneladas al lanzamiento y unas dimensiones de 16,9 x 1,3 metros, con una envergadura alar de 6,7 metros.nustar13

La primera etapa, Orion-50SXL, tiene 10,3 metros de largo y 1,3 metros de diámetro, con un empuje de 726 kN. La segunda etapa, Orion-50XL, tiene unas dimensiones de 4,2 x 1,3 metros y un empuje de 196 kN. La tercera etapa, Orion-38, mide 1,3 x 0,97 metros y genera un empuje de 36 kN. El combustible de todas las etapas es HTPB y todas ellas han sido fabricadas por ATK.nustar14

Lanzamiento de un Pegasus-XL desde el Stargazer (NASA).

Cohete Pegasus-XL (NASA).

El Pegasus-XL puede ser lanzado desde casi cualquier lugar del mundo usando el avión Lockheed L-1011 TriStar. En concreto, el TriStar usado para lanzar el Pegasus-XL en la mayoría de misiones ha sido el N140SC “Stargazer”. El 21 de abril de 1997 un Pegasus-XL puso en órbita el satélite español Minisat-01 después de despegar del aeropuerto de Gando, en Gran Canaria. Éste ha sido el cuarto lanzamiento de un Pegasus-XL desde el atolón de Kwajalein ( 8º 43′ N, 167º 44′ E), el atolón de coral más grande del mundo y donde actualmente se encuentra el Ronald Reagan Ballistic Missile Defense Test Site. No obstante, sobre el papel Kwajalein pertenece a la República de las Islas Marshall. Para esta misión, la integración del cohete y la preparación de la carga útil tuvieron lugar en la Base Aérea de Vandenberg, California.

nustar15nustar16

Atolón de Kwajalein (NASA).

Fases del lanzamiento

– T-1 hora: despegue del “Stargazer” una hora antes del lanzamiento.– T- 5 segundos: suelta del Pegasus-XL desde la panza del avión a 11,9 kilómetros de altura y 0,92 Mach de velocidad.– T-0 s: encendido de la primera etapa.– T+ 76 s: apagado de la primera etapa y separación de la primera etapa a 53 km de altura.– T+ 128,3 s: separación de la cofia a 113 km.– T+ 164,8 s: separación de la segunda etapa a 177 km de altura.– T+ 546 s: ignición de la tercera etapa a 637 km.– T+ 614 s: apagado de la tercera etapa y separación de la carga útil a 646 km.

Integración del cohete en Vandenberg (NASA).nustar19

nustar17

Integración del satélite (NASA).

 

NuSTAR Detecta Una Explosión Estelar Asimétrica

08.05.15.- El telescopio NuSTAR de la NASA ha encontrado evidencias de que una estrella masiva explotó de una manera desequilibrada, eyectando material en una dirección y el núcleo de la estrella en la otra.

Los resultados ofrecen la mejor prueba de que las explosiones de estrellas de este tipo, llamado Tipo II o supernovas de colapso de núcleo, son inherentemente asimétricas, un fenómeno que había sido difícil de probar hasta ahora.

“Las estrellas son objetos esféricos, pero al parecer el proceso por el cual mueren provoca que sus núcleos se vuelvan turbulentos, hirviendo y dando vueltas en los últimos segundos antes de su desaparición”, dijo Steve Boggs, de la Universidad de California, Berkeley, autor principal del estudio. “Estamos aprendiendo que este chapoteo conduce a explosiones asimétricas”.

El remanente de supernova del estudio, llamado 1987A, está a 166.000 años luz de distancia. La luz de la explosión que creó el remanente se hizo visible desde la Tierra en el año 1987. Mientras otros telescopios encontraron nustar20indicios de que esta explosión no era esférica, NuSTAR encontró la “pistola humeante” en forma de un radioisótopo llamado titanio-44.

“El titanio se produce en el corazón mismo de la explosión, por lo que traza la forma del motor que impulsa el desmontaje de la estrella”, dijo Fiona Harrison, investigadora principal de NuSTAR en el Instituto de Tecnología de California en Pasadena. “Al observar el cambio de la energía de los rayos X procedentes de titanio, los datos de NuSTAR revelaron que, sorprendentemente, la mayor parte del material se está alejando de nosotros.”

Cuando la supernova 1987A primero iluminó nuestros cielos hace décadas, los telescopios de todo el mundo tuvieron la oportunidad única de ver cómo se desarrolló y evolucionó este evento. Primero fueron expulsados materiales exteriores, seguidos de materiales más profundos impulsados por isótopos radiactivos, como el cobalto-56. En 2012, el satélite Integral de la Agencia Espacial Europea detectó titanio-44 en 1987A. El titanio-44 continúa consumiéndose en el remanente de supnustar21ernova debido a su larga vida útil de 85 años.

“En cierto modo, es como si 1987A todavía estuviese explotando en frente de nuestros ojos”, dijo Boggs.

NuSTAR trajo una nueva herramienta para el estudio de 1987A. Gracias a la fuerte visión de rayos X de alta energía del observatorio, ha hecho mediciones más precisas de titanio-44. Este material radiactivo se produce en el núcleo de una supernova, lo que proporciona a los astrónomos una sonda directa en los mecanismos de una estrella detonada.

Los datos espectrales de NuSTAR revelan que el titanio-44 se aleja de nosotros a una velocidad de 2,6 millones de kilómetros por hora. Eso indica material eyectado arrojado hacia afuera en una dirección, mientras que el núcleo compacto de la supernova, llamado estrella de neutrones, parece haber salido en la dirección opuesta.

“Estas explosiones son impulsadas por la formación de un objeto compacto, el núcleo restante de la estrella, y esto parece estar asociado a que el núcleo de voladura salga en una dirección, y el material expulsado en otra”, dijo Boggs.

Observaciones anteriores han hecho alusión a la naturaleza desequilibrada de explosiones de supernovas, pero era imposible de confirmar. Telescopios como el Observatorio de Rayos X Chandra de la NASA, que ve los rayos X de más baja energía que NuSTAR, habían visto el hierro que se había calentado en la explosión de 1987A, pero no estaba claro si el hierro fue generado en la explosión o simplemente estaba en los alrededores.

Deja una respuesta

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.