Este Mundo, a veces insólito

Calendario
noviembre 2016
L M X J V S D
 123456
78910111213
14151617181920
21222324252627
282930  

Archivo diario: 9 noviembre, 2016

NEOSSat

NEOSSat (15/02/2013)

Near Earth Object Surveillance Satellite

Mission type: Asteroid detectionneossat1

Operator: CSA, DRDC[1]

COSPAR ID: 2013-009D

SATCAT №: 39089

Website: neossat.ca

Mission duration: Primary mission: 1 year[2]; Elapsed: 3 years, 7 months and 15 days

Spacecraft properties

Bus: Multi-Mission Microsatellite Bus[3]

Manufacturer: David Florida Laboratory, Spectro, Microsat Systems[4]

Launch mass: 74 kg (163 lb)[5]

Dimensions: 137 × 78 × 38 cm (54 × 31 × 15 in)[5]

Power: 45 watts[5]

Launch date: February 25, 2013, 12:31 UTC

Rocket: PSLV-CA C20

Launch site: Satish Dhawan FLP

Contractor: ISRO/Antrix

Orbital parameters

Reference system: Geocentric

Regime: Sun-synchronous[6]

Semi-major axis: 7,155.78 km (4,446.40 mi)[7]

Perigee: 776 km (482 mi)[7]

Apogee: 792 km (492 mi)[7]

Inclination: 98.61 degrees[7]

Period: 100.41 minutes[7]

Mean motion: 14.34[7]

Epoch: January 24, 2015, 10:52:44 UTC[7]

El Cercano a la Tierra objetos de vigilancia por satélite (NEOSSat) [8] es un microsatélite de Canadá utilizando a 15 cm de apertura f / 5,88 telescopio Maksutov similar a la de la nave espacial más, de 3 ejes estabilizado con estabilidad de apuntamiento de ~ 2 segundos de arco en un ~ 100 segunda exposición. Está financiado por la Agencia Espacial Canadiense (CSA) y la Investigación de la Defensa y Desarrollo de Canadá (DRDC), [1] y buscará los interiores a la órbita terrestre (IEO) asteroides, [9] [10] a entre 45 y 55 grados de elongación solar y de 40 a 40 grados de latitud eclíptica. [3]

Spacecraftneossat2

NEOSSat es un microsatélite tamaño de una maleta que mide 137 × 78 × 38 centímetros (54 × 31 × 15 pulgadas), incluyendo deflector telescopio, y un peso de 74 kilogramos (163 libras). [5] [11] Está alimentado por el arseniuro de galio (GaAs) células solares colocadas en los seis lados de su marco; [5] toda la nave espacial utiliza alrededor de 80 vatios de potencia [12] con los sistemas centrales de autobuses que consumen un promedio de 45 vatios [5,. ] La nave espacial utiliza ruedas de reacción en miniatura para el control de la estabilización y la actitud, [13] [14] y barras de torsión magnéticos para volcar exceso de momento, empujando contra el campo magnético de la Tierra, [13] [5] por lo que no de a bordo se requiere de combustible para el funcionamiento. [14]

NEOSSat es un descendiente de satélite más temprano de Canadá. Fue construido en el Multi-Misión de microsatélites autobús, el cual fue creado usando los datos del desarrollo de la mayoría. [10] Su carga científica incluye un telescopio del mismo diseño que en la mayoría de que, [3] [6] y utiliza detectores CCD piezas de la misión más. [6]

El único instrumento se encuentra a 15 centímetros (5,9 pulgadas) telescopio Maksutov-Rumak con un campo de 0,86 grados de visión y / 5.88 relación focal f. [5] la luz entrante se divide y se centró en dos enfría pasivamente 1024 × 1024 pixel CCD, [5] que se utiliza por los proyectos Ness y HEOSS y la otra por el rastreador de estrellas de la nave espacial. [13] Puesto que el telescopio está dirigido relativamente cerca del Sol, que contiene un deflector para proteger a sus detectores de luz solar intensa. [6] La cámara toma la ciencia exposiciones 100 segundos de duración, lo que le permite detectar objetos celestes hasta la magnitud 20. [6] control de actitud de NEOSSat le permitirá mantener estabilidad de apuntamiento de menos de un segundo de arco durante todo el segundo periodo de exposición de 100. [5] [14] Se llevará hasta 288 imágenes por día, [6] la descarga de varias imágenes a la estación de tierra canadiense con cada pasada. [10]

Lanzamiento

NEOSSat fue originalmente programado para su lanzamiento en 2007, [15] pero los retrasos fijarlo de nuevo hasta el año 2013. [16] Junto a otra nave espacial canadiense, Sapphire (un satélite de vigilancia militar), y otros cinco satélites, NEOSSat lanzaron el 25 de febrero de 2013, desde el Centro Espacial Satish Dhawan en Sriharikota, India, a las 12:31 UTC bordo de un cohete PSLV-C20 indio. [17] [18]

Misiones

El satélite NEOSSat llevará a cabo tres misiones.neossat3

La nave espacial demostrar la utilidad de la Multi-Misión de microsatélites autobús (MMMB) como parte de los esfuerzos de la CSA para desarrollar un bus multi-misión asequible. [19] [20]

Cerca de Vigilancia Espacial de la Tierra (NESS), [8] conducido por el investigador principal Alan Hildebrand, de la Universidad de Calgary, utilizará NEOSSat para buscar y realizar un seguimiento de asteroides cercanos a la Tierra dentro de la órbita de la Tierra alrededor del Sol, incluyendo asteroides en las clases de Aten y Atira . Estos asteroides son particularmente difíciles de detectar desde la superficie de la Tierra, ya que suelen ser posicionados en el cielo con luz natural o con luz crepuscular, cuando la luz de fondo del Sol hace que tales objetos débiles invisible. Esta forma de luz parásita no es un problema para un telescopio en órbita, por lo que incluso un telescopio de abertura pequeña como aquélla en la NEOSSat capaz de detectar asteroides débiles. El equipo científico NESS espera ser capaz de detectar muchos de estos asteroides tan débiles como magnitud visual 19. La misión NESS es financiado por el CSA.

Órbita terrestre alta de Vigilancia Espacial (HEOSS), [21] dirigido por el investigador principal Brad Wallace de DRDC, utilizará NEOSSat para llevar a cabo actividades de seguimiento de satélites experimentales. Se centrará principalmente en los satélites de los 15.000 a 40.000 km (9.300 a 24.900 millas) gama, [19], como los satélites geoestacionarios de comunicaciones, que son difíciles de rastrear a través de radar con base en tierra. Estos experimentos incluir la presentación de los datos de seguimiento a la Red de Vigilancia Espacial, como parte del papel de Canadá en el NORAD. Las actividades HEOSS están destinadas a apoyar la planificación de misiones de seguimiento para el Departamento de Defensa Nacional de satélite operativo de localización por satélite, zafiro, que se inició con NEOSSat canadiense. La misión HEOSS es financiado por DRDC.

Desarrollo

NEOSSat, concebido originalmente bajo el nombre NESS (“vigilancia del espacio cerca de la Tierra”), [22] fue propuesta por Dynacon en 2000 a DRDC y CSA como una continuación de la misión de microsatélites MÁS que era entonces la mitad de su desarrollo. Tal como fue concebido durante una fase inicial de un estudio de DRDC, habría reutilizado casi todos los diseños de equipos de la mayoría, el principal Además de ser un gran deflector externo para reducir la luz difusa que incide sobre el plano focal del instrumento, es necesario con el fin de alcanzar su objetivo de sensibilidad de detección de asteroides de magnitud 19.neossat4

Programa de Demostración de Tecnología de DRDC (TDP) aprobó CDN $ 6,5 millones de fondos para NEOSSat en 2003. A mediados de 2004 CSA había aprobado la financiación restante necesaria para iniciar la adquisición NEOSSat, y con DRDC formó un Joint Program Office para gestionar el desarrollo de la misión. [ 15] En este punto, el nombre de la nave espacial se cambió de NESS de NEOSSat. Una fase final Un estudio se llevó a cabo bajo la supervisión del CSA en 2005, y la adquisición de una fase B / C / D se llevó a cabo en 2006/07, con un tope de precio total desarrollo de CDN $ 9,8 millones (sin incluir los costes de lanzamiento). Dynacon fue seleccionada como contratista principal en 2007, momento en el que el coste total de desarrollo se informó como CDN $ 11,5 millones, con una fecha de lanzamiento blanco de finales de 2009. [23] Poco después de eso, Dynacon vendió su división espacial de Microsat Sistemas Canada Inc. (MSCI), que completó el desarrollo de NEOSSat.

A medida que avanzaba el desarrollo, mientras que el concepto de diseño básico se mantuvo, gran parte del equipo en el satélite fue reemplazado por nuevos diseños con el fin de cumplir con los requisitos impuestos por el programa Multi-Misión de microsatélites autobús de la CSA. [21] El diseño básico del instrumento se mantuvo, al igual que el diseño de la estructura básica y el control de actitud sensores y actuadores del subsistema; de a bordo fueron reemplazados computadoras y radios, los instrumentos electrónica de lectura fue rediseñado, y el instrumento “puerta” externa fue sustituido por un obturador interno.

Para el año 2012, la contribución de la CSA una subvención del programa ha aumentado en un CDN $ 3,4 M a CDN $ 8.8M, lo que implica un programa de costo total contratada de salida hasta el final de la puesta en servicio de satélite de CDN $ 15,4 millones. [24] Sin embargo, de acuerdo con una auditoría de la Agencia Espacial Canadiense, el costo total del programa a finales de 2013 fue de C $ 25 millones, incluyendo tanto el CSA y los costos DRDC, con la parte de la CSA del costo reportado en poco menos de CDN $ 13 millones. [25]

Auditoría del programa NEOSSat

En febrero de 2014, la CSA dio a conocer un informe que detalla los resultados de una auditoría del programa NEOSSat, encargado por CSA y llevado a cabo por empresas externas. [25] Esta auditoría, realizada como “un requisito de la CSA plan de evaluación de cinco años”, abarca sólo el período que se inicia con la firma de los contratos NEOSSat del CSA en 2005 hasta finales de 2013. [25] Los informes destacan varios resultados negativos de la auditoría, incluyendo los retrasos en el programa, y los problemas experimentados por el satélite en órbita que han mantenido adquiera una condición operativa. Esto incluye la alimentación eléctrica del subsistema de interferir con la imagen CCD, y los retrasos en el desarrollo de software de vuelo necesaria para el funcionamiento de la cámara y el mantenimiento de naves espaciales que señala la estabilidad. [20] Estos problemas se atribuyen principalmente a la mala actuación del contratista, MSCI, así como a una percepción de que el proyecto había sido “insuficientemente financiados hasta en un 50 por ciento” desde el primer momento. [26] Sin embargo, MSCI ha puesto en duda la crítica contra la compañía, diciendo que los requisitos del programa se escriben mal y que el personal de CSA interfirieron con la construcción del satélite. [27]

Reducir el riesgo de colisión con asteroides

Gracias al lanzamiento de este satélite, Canadá se convierte en uno de los países mejor situados para catalogar la población cercana a la Tierra de asteroides y determinar los objetivos para futuras misiones de exploración espacial. Además de este control, NEOSSat también servirá para controlar la posición de los satélites y la “pérdida de espacio” para reducir al mínimo el riesgo de colisión.

Y para ello, el microsatélite tiene una gran ventaja sobre los telescopios situados en tierra: puede rastrear satélites y basura espacial en muchos lugares, sin estar limitados por su ubicación geográfica, por el ciclo día/noche o por las condiciones climatológicas.

Creemos que, si tiene éxito, este proyecto va a ayudará a la ciencia. Nos ayudará a detectar y vigilar asteroides y cometas en el sistema solar interior. Ser capaces de predecir con suficiente antelación a la vez, un “encuentro” potencial es una parte crucial de la vigilancia del espacio, y esperamos contribuir a este objetivo tan importante“, dijo en una entrevista Guennadi Kroupnik, de la Agencia Espacial Canadiense (CSA).

El Centro de Objetos Cercanos a la Tierra de Vigilancia (NEOSSat), es un satélite, que fuera lanzado y puesto en órbita por un cohete indú, el 25 de febrero próximo pasado. El mismo porta el primer telescopio espacial dedicado a detectar y seguir asteroides, satélites artificiales, así como chatarra espacial que potencialmente podrían acercarse a la Tierra y penetrar en su atmósfera. –

La Agencia espacial Canadiense (AEC) dijo que NEOSSat, tiene el tamaño de una maleta y orbitará la Tierra a una altura de unos 800 kilómetros desde donde buscará asteroides que se acerquen al planeta, con más efectividad que los telescopios terrestres. NEOSSat, da la vuelta al mundo cada 100 minutos explorando el espacio entre el Sol y la Tierra con ese objetivo, pues Canadá asumió el compromiso de mantener seguro el espacio orbital. El NEOSSat, es el último de una familia orgullosa de satélites líderes en el mundo canadiense, en que se aplica un tipo de tecnología líder del sector que ya ha demostrado mucho éxito, por ejemplo en el seguimiento de las Oscilaciones de Estrellas (MAS) por satélite.

“Por su colocación, NEOSSat no estará limitado al ciclo de día y noche y operará las 24 horas durante siete días a la semana”, dijo la agencia canadiense en un comunicado.neossat5

El NEOSSat es el primer microsatélite experimental diseñado para detectar y seguir satélites, objetos que orbitan alrededor de la Tierra y asteroides como el 2012 DA14 que hace 10 días se acercó a sólo 27.860 kilómetros. No así a meteoritos como el que explotó en la atmosfera, a varios kilómetros por encima de unas ciudades de los Urales en Rusia y causó miles de heridos.-
Por su ubicación, no está limitado por el ciclo noche y día, pudiendo cumplir con su misión las 24 horas y los siete días de la semana. Su telescopio tomará cientos de imágenes que serán descargadas y analizadas en el Centro de Operaciones de NEOSSat, en la Universidad de Calgary. De ese modo se contribuirá con los esfuerzos internacionales de catalogar a la población cercana a la Tierra de asteroides, información que también es vital para fijar nuevos destinos en las futuras misiones de exploración espacial.

 El NEOSSat seguirá y catalogará meteoritos que orbitan cerca de la Tierra.

En su otra capacidad, NEOSSat va a monitorear objetos espaciales en órbita para ayudar también a minimizar las colisiones entre ellos. NEOSSat hará un seguimiento de las posiciones entre los satélites y la “basura espacial”, como parte del proyecto de la órbita terrestre alta Sistema de Vigilancia de Investigación de la Defensa y Desarrollo de Canadá (DRDC). NEOSSat es el primer microsatélite usado para este propósito.

También se puso en órbita un satélite de uso militar

El mismo cohete indio que puso hoy en órbita al NEOSSat, el Polar Satellite Launch Vehicle (PSLV), también lanzó el microsatélite Sapphire, el primer satélite de uso totalmente militar de Canadá.

El Departamento de Defensa de Canadá dijo a través de un comunicado que el satélite “permitirá seguir objetos artificiales en la órbitas superiores”.

La información recogida por Sapphire “contribuirá a la red de vigilancia espacial de Estados Unidos lo que mejorará la capacidad de ambos países para detectar y evitar colisiones de plataformas espaciales claves con otros objetos orbitales.

El Near-Earth Object Surveillance Satellite (NEOSSat) de la Agencia Espacial Canadiense (AEC) es el primer microsatélite experimental diseñado para detectar y seguir satélites, objetos que orbitan alrededor de la Tierra y asteroides como el 2012 DA14, que hace 10 días se acercó a sólo 27.860 kilómetros.

Poco antes del paso del 2012 DA14, el objeto espacial de mayor tamaño que se ha acercado tanto a la Tierra, con sus 45 metros de longitud y unas 130.000 toneladas de peso, un gran meteorito cayó en la región rusa de los Urales, causando un millar de heridos.

AEC dijo que NEOSSat, que tiene el tamaño de una maleta, orbitará la Tierra a una altura de unos 800 kilómetros y buscará asteroides que se acerquen al planeta con más efectividad que los telescopios terrestres.neossat6

Científico comprobando la reacción del Neossat ante las radio-frecuencias

Fotografía por cortesía de Janice Lang, DRDC

La Tierra ha recibido una particular llamada de atención con la aparición de dos rocas espaciales: el amenazante asteroide DA14 y el explosivo meteorito ruso. Nuestro planeta se encuentra en una línea de fuego cósmico, y los astrónomos afirman que se ha de trabajar más a fondo en el estudio de próximas amenazas.

En los últimos años han existido algunas colisiones con satélites en órbita, y muchos amagos de accidentes espaciales con la Estación Espacial Internacional, lo que ha desembocado en una preocupación seria para los proveedores de satélites y las agencias espaciales. (Descubre el Top 10 de impactos de asteroides contra la Tierra)

Un centinela del tamaño de una maleta

Con un peso de tan solo 65 kilogramos, este “satélite-maleta” de 12 millones de dólares pasará la mitad de su vida localizando asteroides. Los investigadores dicen que podría encontrar por lo menos un centenar de nuevos asteroides durante su primer año de funcionamiento, algunos de los cuales sin órbita detectada entre la Tierra y el Sol a día de hoy.

Equipado con un parasol especial y gracias a su orientación con respecto al sol, en NEOSSat será capaz de revelar al menos el 50% de asteroides  a un kilómetro de distancia de la órbita terrestre alrededor del sol.

Búsqueda celesteneossat7

Robert Jedicke, astrónomo en la Universidad de Hawai y sin relación alguna con la misión, comenta que algunos NEO (Near-Earth Object) están ocultos a la vista. Se mueven como si fueran asteroides, a gran distancia de la tierra, pero no hacen más que engañar al observador al darle a éste la impresión de estar a una distancia más distante de la que en realidad está. No se pueden ver bien, y no se puede calcular la proximidad debido a que están ocultos en el resplandor del sol.

“Encontrando los NEO que se sitúan fuera del control de los observadores permitirá poder ajustar los cálculos y evaluar los riesgos de forma más eficiente, así como poner a prueba las teorías que rigen la evolución de las órbitas de los asteroides fuera la zona del cinturón principal que rodea la Tierra”.

Si bien la tecnología para la búsqueda de asteroides potencialmente peligrosos ha madurado en el último par de décadas, la mayoría de los grandes asteroides (mucho más grandes que el asteroide ruso)que podrían causar serios daños no se han descubierto todavía, advertía Jedicke. (Descubre el Top 5 de impactos de meteoritos contra la Tierra)

“Al igual que con el meteorito de Chelyabinsk, ahora mismo no disponemos de ningún tipo de alerta o aviso ante un posible impacto en la Tierra”, afirma.

“Aunque NEOSSat suponga una importante contribución para la reducción de impactos, todavía queda mucho por hacer”.

NuSTAR

Logotipo de la misión NuSTAR.nustar1

NuSTAR (telescopio espectroscópico nuclear conjunto) o Nuclear Spectroscopic Telescope Array es un telescopio espacial de rayos X telescopio que utiliza un telescopio Wolter para enfocar la energía de los rayos X a partir de fuentes astrofísicas, especialmente para espectroscopia nuclear, y opera en el rango de 5 a 80 keV.1 Se trata de la undécima misión de la NASA del programa Small Explorer de satélites (SMEX-11) y la primera basada en el espacio directo de imágenes de telescopio de rayos X con energías superiores a los del Observatorio Chandra de Rayos X y XMM-Newton. Fue lanzado con éxito el 13 de junio de 2012, habiendo sido previamente retrasado del 21 de marzo debido a problemas de software con el vehículo de lanzamiento.2 3

Sus objetivos principales son llevar a cabo un estudio profundo de los agujeros negros mil millones de veces más masivos que nuestro Sol, comprender cómo las partículnustar2as se aceleran dentro de una fracción de un punto porcentual por debajo de la velocidad de la luz en las galaxias activas, y entender cómo los elementos se crean en las explosiones de estrellas masivas, que se llaman los remanentes de supernovas.

Historia

El predecesor del NuSTAR, el Telescopio de enfoque de Alta Energía (HEFT), era una versión que se colocaba en un globo que lleva a los telescopios y detectores construidos con tecnologías similares. En febrero de 2003, la NASA publicó un Anuncio del Programa Explorador de Oportunidades. En respuesta, NuSTAR se presentó a la NASA en mayo, como una de las 36 propuestas de misión que compiten.4 En noviembre, la NASA seleccionó NuSTAR y otras cuatro propuestas para un estudio de ejecución de cinco meses de factibilidad.

En enero de 2005, la NASA seleccionó al NuSTAR para el vuelo en espera de un estudio de factibilidad de un año.5 El programa fue cancelado en febrero de 2006 como resultado de los recortes presupuestarios a la ciencia. El 21 de septiembre de 2007 se anunció que el programa se había reiniciado, con un lanzamiento previsto en agosto de 2011, aunque más tarde se retrasó hasta junio de 2012.3 6 7 8

Lanzamiento del satélite NuSTAR (Pegasus-XL)

Daniel Marín 13 jun 12

La empresa Orbital Sciences Corporation ha lanzado hoy miércoles 13 de junio de 2012 a las 16:00 UTC un cohete Pegasus-XL (vehículo M48 “Dalton”) desde el avión Lockheed L-1011 “Stargazer” mientras sobrevolaba el océano Pacífico. La carga era el observatorio espacial de rayos X NuSTAR de la NASA. El avión L-1011 despegó desde la base militar Ronald Reagan para pruebas de defensa de misiles balísticos, situada en el atolón de Kwajalein. Éste ha sido el 41º lanzamiento de un cohete Pegasus y el 31º de un Pegasus-XL. La órbita inicial fue de 632,8 x 626,9 kilómetros con 6,024º de inclinación.

NuSTAR (Nuclear Spectroscopic Telescope Array) o SMEX 11 es un pequeño telescopio de rayos X de la NASA que forma parte del programa SMEX (Small Explorer) de nustar3misiones de bajo coste. Tiene una masa de 350 kg y estará situado en una órbita de 575 x 600 kilómetros de altura y 6º de inclinación. Su vida útil, limitada por la altura orbital, se estima en siete años, aunque la misión primaria durará solamente dos años. Sus dimensiones son de 1,2 x 2,2 metros al lanzamiento y 1,2 x 10,9 metros una vez en el espacio. Los paneles solares pueden generar 729 W de potencia. NuSTAR usa la plataforma LEOStar-2 de Orbital, con unas dimensiones de 1,0 x 1,1 x 0,5 metros. La misión ha salido por unos 170 millones de dólares.

Partes de NuSTAR (configuración de lanzamiento) (NASA).

A diferencia de otros observatorios espaciales de rayos X más caros y complejos -como XMM Newton o Chandra-, NuSTAR será capaz de detectar rayos X muy energéticos, en el rango de energías 6-79 keV. Hasta ahora, la mayor parte de telescopios de rayos X solamente alcanzaban los 15 keV. Por lo tanto, los objetivos de NuSTAR serán los sucesos más energéticos del Universo, provocados por agujeros negros, restos de supernovas, cuásares, estrellas de neutrones, etc.nustar4

NuSTAR está equipado con dos telescopios de rayos X de incidencia rasante con un diseño estándar Wolter-I (similar al usado en el XMM Newton de la ESA). Los telescopios tienen una longitud de 0,45 metros, un radio de 0,191 metros y una distancia focal de 10 metros. Debido a su alto poder de penetración, los rayos X no pueden ser reflejados mediante espejos convencionales, así que para poder enfocarlos hacia los instrumentos se emplean dos conjuntos de 133 paraboloides e hiperboloides concéntricos de 0,2 milímetros de espesor cada uno. Los rayos X inciden primero de forma casi paralela sobre las superficies parabólicas y luego son reflejados hacia las superficies hiperbólicas situadas detrás, las cuales consiguen enfocar los rayos X en los instrumentos. El alto número de superficies concéntricas -133- frente a las solo cuatro empleadas por el telescopio Chandra se debe a la necesidad de aumentar la superficie útil del telescopio para los rayos X más energéticos y, con ella, su sensibilidad.nustar5

 

Esquema del telescopio de rayos X de incidencia rasante XMM Newton (NASA).

La óptica de uno de los dos telescopios de NuSTAR (NASA).nustar6

Tan importante es la forma de los “espejos” como el material con el que están recubiertos. Otros telescopios de rayos X como XMM Newton o Chandra han empleado platino, oro o iridio para mejorar la reflectividad de las superficies. Sin embargo, estos materiales absorben los rayos X más energéticos, así que no podían ser usados en esta misión. NuSTAR emplea sin embargo un sistema multicapa con 200 pares de capas, cada una de ellas con un material denso (tungsteno o platino) y otro poco denso (silicio o carbono) que crean la reflectividad necesaria en todo el rango energético.nustar7

Para lograr un diseño compacto al lanzamiento que sea compatible con la elevada focal de un telescopio de rayos X, NuSTAR usa un mástil desplegable construido por ATK-Goleta basado en el empleado por las antenas de radar de la misión de cartografía radar (SRTM) llevada a cabo durante la STS-99 Endeavour en el año 2000. Para asegurar la correcta alineación entre el mástil y los instrumentos, NuSTAR usará dos láseres que miden la desviación de los telescopios. El despliegue tendrá lugar una semana después del lanzamiento y durará 25 minutos.

Mástil en posición plegada (NASA).

nustar8El instrumento principal de NuSTAR está formado por dos detectores de rayos X situados en el foco de cada telescopio. Cada uno consta de 32 x 32 píxeles de cadmio-zinc-teluro (CdZnTe o CZT). Las señales de los dos detectores se combinarán en Tierra para formar una única imagen. Con el fin de evitar que los rayos cósmicos o los rayos X que no procedan de los telescopios puedan llegar a los detectores, éstos están rodeados por un escudo de ioduro de cesio. Los dnustar9etectores tienen un campo de visión de 13×13 minutos de arco, una resolución angular de 50 segundos de arco y una resolución espectral de 600 eV a 6 keV y 1,2 keV a 60 keV.

Simulación de cómo verá el centro galáctico NuSTAR (abajo) comparado con el telescopio de rayos gamma Integral (NASA).

nustar12

Comparación entre la sensibilidad energética de NuSTAR y otros telescopios de rayos X (NASA).

 

Detectores de NuSTAR (NASA).

nustar10

Escudo de los detectores (NASA).nustar11

 

En un principio, NuSTAR debía haber tenido tres telescopios en vez de dos, pero se decidió reducir el número de unidades para evitar una posible cancelación. De hecho, entre febrero de 2006 y septiembre de 2007 la misión estuvo congelada esperando una cancelación definitiva. La fecha original del lanzamiento era 2011. El telescopio GEMS, otra misión parecida del programa SMEX, no ha tenido tanta suerte y fue cancelada el mes pasado.

Pegasus-XL

El Pegasus-XL es un cohete de tres etapas de combustible sólido lanzado desde un avión Lockheed L-1011 TriStar. Puede situar hasta 475 kg en LEO o 175 kg en una órbita de transferencia geoestacionaria (GTO). El cohete tiene una masa de 23,269 toneladas al lanzamiento y unas dimensiones de 16,9 x 1,3 metros, con una envergadura alar de 6,7 metros.nustar13

La primera etapa, Orion-50SXL, tiene 10,3 metros de largo y 1,3 metros de diámetro, con un empuje de 726 kN. La segunda etapa, Orion-50XL, tiene unas dimensiones de 4,2 x 1,3 metros y un empuje de 196 kN. La tercera etapa, Orion-38, mide 1,3 x 0,97 metros y genera un empuje de 36 kN. El combustible de todas las etapas es HTPB y todas ellas han sido fabricadas por ATK.nustar14

Lanzamiento de un Pegasus-XL desde el Stargazer (NASA).

Cohete Pegasus-XL (NASA).

El Pegasus-XL puede ser lanzado desde casi cualquier lugar del mundo usando el avión Lockheed L-1011 TriStar. En concreto, el TriStar usado para lanzar el Pegasus-XL en la mayoría de misiones ha sido el N140SC “Stargazer”. El 21 de abril de 1997 un Pegasus-XL puso en órbita el satélite español Minisat-01 después de despegar del aeropuerto de Gando, en Gran Canaria. Éste ha sido el cuarto lanzamiento de un Pegasus-XL desde el atolón de Kwajalein ( 8º 43′ N, 167º 44′ E), el atolón de coral más grande del mundo y donde actualmente se encuentra el Ronald Reagan Ballistic Missile Defense Test Site. No obstante, sobre el papel Kwajalein pertenece a la República de las Islas Marshall. Para esta misión, la integración del cohete y la preparación de la carga útil tuvieron lugar en la Base Aérea de Vandenberg, California.

nustar15nustar16

Atolón de Kwajalein (NASA).

Fases del lanzamiento

– T-1 hora: despegue del “Stargazer” una hora antes del lanzamiento.– T- 5 segundos: suelta del Pegasus-XL desde la panza del avión a 11,9 kilómetros de altura y 0,92 Mach de velocidad.– T-0 s: encendido de la primera etapa.– T+ 76 s: apagado de la primera etapa y separación de la primera etapa a 53 km de altura.– T+ 128,3 s: separación de la cofia a 113 km.– T+ 164,8 s: separación de la segunda etapa a 177 km de altura.– T+ 546 s: ignición de la tercera etapa a 637 km.– T+ 614 s: apagado de la tercera etapa y separación de la carga útil a 646 km.

Integración del cohete en Vandenberg (NASA).nustar19

nustar17

Integración del satélite (NASA).

 

NuSTAR Detecta Una Explosión Estelar Asimétrica

08.05.15.- El telescopio NuSTAR de la NASA ha encontrado evidencias de que una estrella masiva explotó de una manera desequilibrada, eyectando material en una dirección y el núcleo de la estrella en la otra.

Los resultados ofrecen la mejor prueba de que las explosiones de estrellas de este tipo, llamado Tipo II o supernovas de colapso de núcleo, son inherentemente asimétricas, un fenómeno que había sido difícil de probar hasta ahora.

“Las estrellas son objetos esféricos, pero al parecer el proceso por el cual mueren provoca que sus núcleos se vuelvan turbulentos, hirviendo y dando vueltas en los últimos segundos antes de su desaparición”, dijo Steve Boggs, de la Universidad de California, Berkeley, autor principal del estudio. “Estamos aprendiendo que este chapoteo conduce a explosiones asimétricas”.

El remanente de supernova del estudio, llamado 1987A, está a 166.000 años luz de distancia. La luz de la explosión que creó el remanente se hizo visible desde la Tierra en el año 1987. Mientras otros telescopios encontraron nustar20indicios de que esta explosión no era esférica, NuSTAR encontró la “pistola humeante” en forma de un radioisótopo llamado titanio-44.

“El titanio se produce en el corazón mismo de la explosión, por lo que traza la forma del motor que impulsa el desmontaje de la estrella”, dijo Fiona Harrison, investigadora principal de NuSTAR en el Instituto de Tecnología de California en Pasadena. “Al observar el cambio de la energía de los rayos X procedentes de titanio, los datos de NuSTAR revelaron que, sorprendentemente, la mayor parte del material se está alejando de nosotros.”

Cuando la supernova 1987A primero iluminó nuestros cielos hace décadas, los telescopios de todo el mundo tuvieron la oportunidad única de ver cómo se desarrolló y evolucionó este evento. Primero fueron expulsados materiales exteriores, seguidos de materiales más profundos impulsados por isótopos radiactivos, como el cobalto-56. En 2012, el satélite Integral de la Agencia Espacial Europea detectó titanio-44 en 1987A. El titanio-44 continúa consumiéndose en el remanente de supnustar21ernova debido a su larga vida útil de 85 años.

“En cierto modo, es como si 1987A todavía estuviese explotando en frente de nuestros ojos”, dijo Boggs.

NuSTAR trajo una nueva herramienta para el estudio de 1987A. Gracias a la fuerte visión de rayos X de alta energía del observatorio, ha hecho mediciones más precisas de titanio-44. Este material radiactivo se produce en el núcleo de una supernova, lo que proporciona a los astrónomos una sonda directa en los mecanismos de una estrella detonada.

Los datos espectrales de NuSTAR revelan que el titanio-44 se aleja de nosotros a una velocidad de 2,6 millones de kilómetros por hora. Eso indica material eyectado arrojado hacia afuera en una dirección, mientras que el núcleo compacto de la supernova, llamado estrella de neutrones, parece haber salido en la dirección opuesta.

“Estas explosiones son impulsadas por la formación de un objeto compacto, el núcleo restante de la estrella, y esto parece estar asociado a que el núcleo de voladura salga en una dirección, y el material expulsado en otra”, dijo Boggs.

Observaciones anteriores han hecho alusión a la naturaleza desequilibrada de explosiones de supernovas, pero era imposible de confirmar. Telescopios como el Observatorio de Rayos X Chandra de la NASA, que ve los rayos X de más baja energía que NuSTAR, habían visto el hierro que se había calentado en la explosión de 1987A, pero no estaba claro si el hierro fue generado en la explosión o simplemente estaba en los alrededores.