Este Mundo, a veces insólito

Calendario
octubre 2024
L M X J V S D
 123456
78910111213
14151617181920
21222324252627
28293031  

Alunizaje de satélite – Luna 9

Rate this post

Luna 9

Luna 9 (Lunik 9), módulo de aterrizaje.

Tras ser lanzada el 31 de enero de 1966 a bordo de un cohete Molniya-M desde el cosmódromo de Baikonur, el 3 de febrero de 1966 a las 18:44 UTC; era el duodécimo intento de la URSS de hacer un aterrizaje suave.

La sonda alunizó exitosamente el 3 de febrero del mismo año en el Océano de las Tormentas (en las coordenadas 7,08ºN-64,4ºW). Fue el primer objeto construido por el hombre en posarse suavemente en otro cuerpo celeste. Cuando se posó, abrió sus largas placas con forma de pétalo y tomó fotos del panorama. Trasmitió fotos y datos durante tres días.

La sonda, diseñada por la oficina OKB 1 de Serguéi Koroliov, tenía al lanzamiento un peso de 1580 kg. Las sondas de esta serie, cuando se posaban sobre la superficie lunar a unos 15 metros por segundo, eyectaban mecánicamente la carga útil: una esfera rodeada por una bolsa de aire que actuaba como amortiguador del golpe. Luego la bolsa se desinflaba y se abrían cuatro piezas en forma de pétalos que ponían al descubierto cámaras, antenas y otros instrumentos.

La carga útil tenía un peso de 82 kg. En versiones posteriores se aumentó el peso a 230 kg.

La Luna 9 aterrizó dentro de un airbag que se infló cuando el radar del módulo de propulsión detectó que estaba a una altitud de 75 kilómetros sobre la superficie lunar y que fue eyectado a 5 metros de altura, cuando un sensor de contacto tocó esta.

Desde el Océano de las Tormentas transmitió datos de su medidor de radiación, el único instrumento científico que llevaba a bordo, que midió una dosis de 0,3 miligrays por día, aunque su aterrizaje también permitió determinar que la superficie lunar es capaz de soportar el peso de una sonda sin que esta se hunda en ella.

El último contacto con la Luna 9 se produjo a las 22:55 UTC del 6 de febrero 1966, cuando se agotaron sus baterías.

Durante el periodo en el que estuvo en funcionamiento estuvo en contacto con el control de la misión durante un total de 8 horas y 5 minutos, durante las que, aparte de los datos de radiación, transmitió un total de 27 fotografías de la superficie de la Luna.

Esas fotografías fueron transmitidas en abierto en un formato estándar, así que aunque las autoridades soviéticas no las hicieron públicas de inmediato en el Observatorio Jodrell Bank, donde se dieron cuenta en seguida de que estaban siendo transmitidas así, las recibieron todas, haciéndolas públicas.


Primera foto transmitida por la Luna 9 – Jodrell Bank Centre for Astrophysics, University of Manchester

Las cámara que las tomaba estaba montada sobre un soporte que le permitía girar, así que en total forman tres panoramas, que se pueden ver como Panorama 1, Panorama 2 y Panorama 3 en la página Soviet Moon Images de la web de Don P. Mitchell.

Referencia:

La primera imagen de la superficie de la luna, tomada por la nave espacial Luna 9.Crédito: NASA

Los airbags montados en la cápsula de aterrizaje Luna 9 ayudaron a amortiguar el impacto.Crédito: NASA

“La estación consistía en un contenedor sellado herméticamente, presurizado a 1.2 atmósferas, que contenía el sistema de radio, el dispositivo de programación, las baterías, el sistema de control térmico y el aparato científico. Cuatro antenas que se abrían automáticamente después del aterrizaje estaban montadas en el exterior del compartimento”. La NASA escribió , y agregó que también había bolsas de aire montadas en el módulo de aterrizaje para amortiguar el impacto.

Además del equipo necesario para mantener la nave espacial sana, así como el combustible, llevaba algunos equipos científicos. Esto incluyó una cámara de televisión y un detector de radiación.

La nave espacial rebotó en la superficie lunar varias veces antes de detenerse en el Océano de las Tormentas, según la NASA. Aproximadamente 250 segundos después del aterrizaje, cuatro pétalos estabilizaron la nave espacial y el sistema de televisión comenzó a enviar imágenes a la Tierra. Los primeros días de la fotografía espacial fueron difíciles, pero con el tiempo los controladores podían tener una idea de cómo era la superficie.

La primera imagen de prueba, que mostraba un contraste muy pobre porque el Sol estaba a solo 3 grados sobre el horizonte, se completó 15 minutos [después del aterrizaje] “, afirmó la NASA. Se transmitieron siete sesiones de radio, un total de 8 horas y 5 minutos. Fueron tres series de imágenes de televisión. Cuando se ensamblaron, las fotografías proporcionaron cuatro vistas panorámicas de la superficie lunar cercana”.

Luna 9 sobrevivió a tres días terrestres en la superficie hasta que sus baterías se agotaron. Según las imágenes, los científicos podrían decir que la nave espacial había aterrizado cerca de un cráter de veintisiete metros (25 pies). El módulo de aterrizaje estaba inicialmente en una inclinación de 15 grados, pero el regolito (suelo) en la luna se movió debajo y colocó el módulo de aterrizaje a una inclinación de 22.5 grados, según las imágenes.

Recurso adicional

Esta fue la primera misión exitosa de la serie de exploradores lunares que utilizan el bus de vuelo ‘E-6’, que se utiliza para misiones tanto de aterrizaje como de orbitador.

En esta vista, estamos mirando el extremo del vehículo que alberga el módulo de aterrizaje. En el extremo opuesto está la carcasa cónica del retrocohete, que se disparó justo antes del aterrizaje. Hay una mejor vista de ella en la fotografía en la página de Luna 10. Dos de los cuatro motores de corrección de recorrido de baja potencia se pueden ver alrededor del cuerpo del vehículo. Varias cajas de equipo están conectadas a la nave espacial principal. Estos contienen el sistema de guía, baterías químicas y sistemas de navegación. Para minimizar el uso de combustible, fueron diseñados para ser desechados justo antes del disparo retro-cohete.

Aquí, un técnico trabaja en una nave espacial del diseño Luna 9. El objeto en forma de bola cubierto de material aislante es el módulo de aterrizaje. Antes del impacto, la capa aislante se inflaba como un globo para proporcionar un impacto relativamente suave. Tener un ser humano en la imagen da una indicación del tamaño real de la nave espacial.

El cuerpo principal del autobús de la nave espacial tenía una varilla que se extendía hacia abajo desde la sección retro del cohete. Al entrar en contacto con la superficie lunar, activó un mecanismo de eyección para empujar el módulo de aterrizaje hacia arriba y lejos de la nave espacial para que cayera por separado a la superficie de la Luna para un impacto (relativamente) de baja velocidad, suavizado aún más por el “globo” inflado. Un centro de gravedad desplazado le permitió rodar ‘hacia arriba para que los pétalos se abrieran.

El resto del mundo se asombrará del éxito soviético, pero el camino hasta el éxito no ha sido nada fácil. Nada más y nada menos que once misiones previas intentaron alunizar de forma suave y no lo consiguieron. Todo comenzó a finales de los años 50, cuando la oficina de diseño OKB-1 de Serguéi Koroliov diseñó su plan para desarrollar una familia de sondas automáticas que estudiasen nuestro satélite en varias etapas. Las naves recibieron como nombre la letra cirílica Ye (Е) por el sencillo motivo de que es la siguiente después de la D (Д), una letra usada para los proyectos de primeros satélites artificiales alrededor de la Tierra que culminaron en la puesta en órbita del Sputnik en 1957.

Las sondas Ye-1 tenían como objetivo chocar contra la Luna y dejar un bonito cráter en el proceso. En realidad su misión era analizar las condiciones del espacio cislunar, auténtica terra incognita por aquel entonces y permitir el desarrollo de tecnologías necesarias para guiar una sonda espacial hasta la Luna. Las sondas Ye-2 y Ye-3 fueron concebidas para fotografiar la misteriosa cara oculta, mientras que las Ye-5 tenían como misión orbitar la Luna y fotografiar su superficie en detalle. Pero sin duda el proyecto Ye-4 era el más llamativo de todos. Esta familia de naves debía enviar un arma nuclear hasta la Luna y detonarla en el momento del impacto para que todo el mundo pudiese ver la explosión desde la Tierra.

Cápsula de descenso de la Luna 9 (Eureka).

El siguiente paso en el plan de la OKB-1 era, lógicamente, alcanzar la superficie lunar. Para tal fin se creó la familia Ye-6, que también recibió la denominación oficial de ALS (Avtomatícheskaia Lúnnaia Stantsia, “estación lunar automática”). Pero ¿cómo diseñar una nave capaz de alunizar suavemente en la Luna? Para conseguir esta hazaña es necesario saber en todo momento la altura y velocidad del vehículo, así como disponer de la capacidad para modificar estos parámetros si es necesario. Esto puede parecer sencillo hoy en día, pero a comienzos de los años 60 era un desafío mayúsculo. Para colmo ni siquiera se tenían datos precisos de la superficie lunar, así que una nave debía descender a ciegas, guiada por un simple radar. Al otro lado del planeta, los estadounidenses habían creado el programa Surveyor para aterrizar en la Luna. Estas sondas usarían un cohete de combustible sólido desechable para reducir la mayor parte de la velocidad de caída durante el descenso. Luego, en la fase final, emplearían un sistema de propulsión regulable guiado por un radar que les permitiría posarse suavemente sobre su tren de aterrizaje. Se trataba de un sistema tan lógico que resultaba difícil concebir otro diseño alternativo.

Los ingenieros de la OKB-1 consideraron que el sistema norteamericano era demasiado complejo para una fase inicial. Ya habría tiempo de diseñar sondas avanzadas de aterrizaje dentro del marco de los proyectos Ye-8 (Lunojod) y Ye-8-5 (retorno de muestras). Ahora la prioridad era alcanzar la superficie como fuera. El principal problema del diseño estadounidense era la precisión en la navegación. Para garantizar un aterrizaje suave era necesaria una coordinación exquisita en tiempo real entre el sistema de propulsión y el sistema de guiado. Cualquier fallo por pequeño que fuese y la sonda se estrellaría contra la superficie. Si los motores se apagaban a demasiada altura, la sonda terminaría destruida al caer. Si no frenaba lo suficiente, también sería destruida. ¿Qué hacer entonces?

La solución de la OKB-1 fue tan ingeniosa como simple. De entrada, decidieron renunciar a conseguir que la sonda redujese su velocidad a cero cerca de la superficie. La nave se estrellaría, sí, pero no antes de desprender una pequeña cápsula con los instrumentos. Esta cápsula, que sería la auténtica sonda de superficie, estaría protegida por dos bolsas inflables de aire comprimido. De esta forma se podía evitar el tener que diseñar un sistema de guiado avanzado.

Partes de la sonda Ye-6M.

La Ye-6 sería por tanto una nave formada por tres secciones. La primera comprendía el motor principal construido por la oficina de diseño de Isayev. Estaba dotado de un empuje de 4,64 toneladas y quemaba ácido nítrico e hidracina almacenados en quince tanques distintos. Ayudando al motor había cuatro pequeños impulsores de 245 newtons de empuje cada uno para correcciones durante el descenso. La sección intermedia estaba presurizada a 1,2 atmósferas y contenía todos los sistemas de comunicación y control del vehículo. A ambos lados de esta sección estaban acoplados dos módulos que contenían el radar altímetro y los sensores estelares del sistema de navegación Yupíter (Júpiter), respectivamente. La sección presurizada también incluía el sistema de control I-100 que debía dirigir no solo la sonda, sino también la tercera y cuarta etapas del cohete Mólniya (una versión de cuatro etapas del misil R-7 Semiorka).

Otra vista de una sonda Ye-6 sin la cápsula superior (Novosti Kosmonavtiki).

 

 

 

 

 

 

Detalle de la cámara (Novosti Kosmonavtiki).

Los instrumentos consistían en una cámara de 3,6 kg y un detector de radiación KS-17M (un contador Geiger). La cámara, situada en la parte superior, era realmente un fotómetro situado en el interior de un cilindro presurizado (en inglés, a este tipo de cámara extremadamente simple se le llama push broom). Un espejo se encargaba de escanear los alrededores, produciendo una imagen con una resolución de 5,5 milímetros a una distancia de 1,4 metros. Este tipo de cámaras sería usado en muchas otras misiones, como las sondas Mars o los Lunojods. La cápsula contaba con cuatro antenas desplegables de comunicación de las que colgaban cuatro masas. Observando la inclinación de dichos pesos en las imágenes, los investigadores podían medir la pendiente y orientación de la sonda con respecto a la superficie. Con los pétalos desplegados el diámetro total de la cápsula era de 160 centímetros y, con las antenas, la altura alcanzaba los 112 centímetros.

 

 

Deja una respuesta

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.