Este Mundo, a veces insólito

Calendario
mayo 2024
L M X J V S D
 12345
6789101112
13141516171819
20212223242526
2728293031  

Observatorios espaciales

Un observatorio espacial, también conocido como telescopio espacial, es un satélite artificial o sonda espacial que se utiliza para la observación de planetas, estrellas, galaxias y otros cuerpos celestes de forma similar a un telescopio en tierra. Se han lanzado una cantidad importante de telescopios espaciales a órbita desde que el Cosmos 215, considerado el primer observatorio espacial,1 2 fuese lanzado el 18 de abril de 1968, proporcionando mayor información y conocimiento del cosmos.

Estos telescopios, pueden ser parte del satélite portador, o ser el único instrumento del mismo, y pueden observar, una o varias frecuencias electromagnéticas. Como son: los rayos cósmicos, el viento solar, la radiación ultravioleta, etc. Se excluyen aquellos observatorios que solamente se dedican a obtener fotografías, con cámaras de alta resolución.

space_telescopes_rk2011_1200x700Clasificación muy interesante: http://www.letraherido.com/13040105grandestelescopios.htm#1

Pioneer 6 – Pioneer A 16/12/1965 NASA Viento solar y Rayos cósmicos
Pioneer 7 – Pioneer B 17/08/1966 NASA Viento solar y Rayos cósmicos
Pioneer 8 – Pioneer C 13/12/1967 – 1996 NASA Viento solar y Rayos cósmicos
Cosmos 215 18/04/1968 – 30/06/1972 URSS Luz visible y ultravioleta
Pioneer 9 – Pioneer D 08/11/1968 – 05/1983 NASA Viento solar y Rayos cósmicos
OAO-2 07/12/1968 – 13/02/1973 NASA Luz ultravioleta
Uhuru (SAS-1) 12/12/1970 – 01/03/1973 NASA Telescopio de Rayos X
Orión-1 19/04/1971 URSS Ultravioleta
SAS 2 15/02/1972 – 08/06/1973 NASA Rayos Gamma
Pioneer 10 12/03/1972 – 2003 NASA Viento solar y Rayos cósmicos
UVC 23/04/1972 NASA Ultravioleta
OAO-3 – Copérnico 21/08/1972 – 02/1981 NASA y SERC Telescopio de Rayos X y ultravioleta
KAO 05/1974 – 1995 NASA Infrarrojo
ANS 30/08/1974 – 02/06/1976 ISRO Rayos X y ultravioleta
Ariel V 15/12/1974 – 14/03/1980 SRC y NASA Rayos X
Aryabhata 19/04/1975 – 24/04/1975 ISRO Rayos X
SAS 3 07/05/1975 – 09/04/1979 NASA Rayos X
COS-B 09/08/1975 – 18/01/1986 ESA Rayos X y Rayos gamma
HEAO-1 12/08/1977 – 09/01/1979 NASA Telescopio de Rayos X
IUE 26/01/1978 – 30/12/1996 NASA, SRC, ESA Ultravioleta
HEAO-2 (Einstein) 13/11/1978 – 26/04/1981 NASA Telescopio de Rayos X
(Corsa-b) Hachuko 21/02/1979 – 16/04/1985 JAXA Rayos X y Rayos gamma
HEAO-3 20/09/1979 – 29/05/1981 NASA Telescopio de Rayos X y rayos gamma
Maximum Mission – SMM 14/02/1980 – 02/12/1989 NASA Erupciones solares
IRAS 25/01/1983 – 21/11/1983 NASA, NIVR, SERC Infrarrojo
Tenma – ASTRO-B 20/02/1983 – 17/12/1988 JAXA Rayos X y Rayos gamma
Astron 23/03/1983 – 1989 Rusia Rayos X y Ultravioleta
EXOSAT 26/04/1983 – 06/04/1986 ESA Telescopio de Rayos X
ASTRO-C – (Ginga) 05/02/1987 – 01/11/1991 ISAS Rayos X
Hipparcos 18/08/1989 – 17/08/1993 ESA Cartografía de la Vía Láctea
COBE 18/11/1989 – 1993 NASA Microondas
Granat 01/12/1989 – 27/11/1998 IKI y CNRS Rayos X y rayos gamma
Hubble 24/04/1990 NASA y ESA Reflector, varios
ROSAT 01/06/1990 – 12/02/1999 DLR Telescopio de Rayos X
Gamma 11/07/1990 – 28/02/1992 RSA Rayos Gamma
Ulysses 06/09/1990 – 30/06/2009 NASA y ESA Sol, Planetas solare y objetos menores
Astro 1 02/12/1990 – 11/12/1990 NASA Rayos X y ultravioleta
Compton – CGRO 05/04/1991 – 04/06/2000 NASA Rayos Gamma
Yohkoh – SOLAR-A 30/08/1991 – 14/12/2001 ISAS Planetas solare y objetos menores
Extreme Ultraviolet Explorer EUVE 07/06/1992 – 30/01/2002 NASA Telescopio del Ultravioleta
SAMPEX 03/07/1992 – 30/06/2004 NASA Partículas energéticas
Asuka (ASKA) – ASTRO-D 20/02/1993 – 14/07/2000 JAXA Rayos X y Rayos gamma
Spartan 201 08/04/1993 NASA Varios
Alexis 25/04/1993 – 29/04/2005 LANL Rayos X
CGS/Wind – Clementine 01/11/1994 NASA Planetas solare y objetos menores
Astro 2 02/03/1995 – 18/03/1995 NASA Ultravioleta
IRTS 18/03/1995 – 15/04/1995 ICEA & NASDA Infrarrojo
IEH-1 07/09/1995 NASA Varios
ISO 17/11/1995 – 16/05/1998 ESA y NASA Infrarrojo
SoHO 02/12/1995 NASA y ESA Observatorio solar
RXTE 30/12/1995 – 05/01/2012 NASA Telescopio rayos X
MSX 24/04/1996 – 26/02/1997 USN Infrarrojo
BeppoSAX 30/04/1996 – 29/04/2003 ASI e NIVR Telescopio de Rayos X
ORFEUS-SPAS 19/11/1996 – 07/12/1996 NASA y DARA Ultravioleta
HALCA MUSAS-B VSOP 12/02/1997 – 30/11/2005 ICEA Radio, onda larga
Minisat-01 – LEGRI 21/04/1997 – 26/02/2002 INTA Rayos X y Rayos gamma
IEH-2 07/08/1997 – 19/08/1997 NASA Varios
Advance Composition Explorer 25/08/1997 NASA Observatorio Rayos cósmicos
Cassini/Huygens 15/10/1997 NASA, ESA, ASI Planetas solare y objetos menores
AMS-01 03/06/1998 Varios Partículas energéticas
IEH-3 29/10/1998 – 07/11/1998 NASA Varios
SWAS – Explorer 74 06/12/1998 – 21/07/2004 NASA Ondas submilimétricas
WIRE 05/03/1999 – 10/05/2011 NASA Infrarrojo
ABRIXAS 28/04/1999 – 01/05/1999 DLR Rayos X
FUSE 24/06/1999 – 06/09/2007 NASA, CNES y CSA Ultravioleta
Chandra – (AXAF) 23/07/1999 NASA Telescopio de Rayos X
XMM-Newton 10/12/1999 ESA Telescopio de Rayos X
HETE-2 Explorer-2 09/10/2000 NASA Rayos Gamma y Rayos X
ATIC 28/12/2000 NASA Observatorio Rayos cósmicos
Odín 20/02/2001 SSC Astrofísica y microondas
WMAP 30/06/2001 – 28/10/2010 NASA Teoría y origen del universo.
INTEGRAL 17/02/2002 ESA, NASA Rayos Gamma – X – visible
BOOMERanG 06/01/2003 – 21/01/2003 Observatorio Rayos cósmicos
CHIPSat 13/01/2003 – 11/04/2008 NASA Ultravioleta
GALEX 28/04/2003 – 28/06/2013 NASA Galaxias en ultravioleta
MOST 30/06/2003 CSA Búsqueda planetas extrasolares
SIRTF – Spitzer 25/08/2003 NASA Infrarrojos. Objetos fríos, visible
STSat1 – Kaistsat 4 27/09/2003 – 10/2005 KARI Ultravioleta
SWIFT 20/11/2004 NASA y otros Fuente de rayos gamma y otros
ASTRO-EII – (Suzaku) 10/07/2005 – 02/09/2015 ISAS y NASA Telescopio de Rayos X
ASTRO-F (Akari) 21/02/2006 – 24/11/2011 JAXA y ESA Infrarrojo
Pamela 11/06/2006 Italia Detección de partículas, materia oscura
Corot 27/12/2006 – 24/06/2013 CNES, ESA, etc. Búsqueda planetas extrasolares
AGILE 23/04/2007 ASI Telescopio rayos gamma
Gravity Probe B 20/04/2008 NASA Teoría relatividad y gravedad
Fermi (GLAST) 11/06/2008 NASA y otros Fuente de rayos gamma
IBEX – Explorer 91 19/10/2008 – 16/08/2016 NASA Partículas energéticas sistema solar
Kepler 06/03/2009 – 01/05/2013 NASA Búsqueda planetas extrasolares
Herschel 14/05/2009 – 29/04/2013 ESA Infrarrojo lejano, Ondas submilimétricas
Planck 14/05/2009 – 10/12/2014 ESA Infrarrojo lejano, Ondas submilimétricas
WISE 14/12/2009 – –/–/2011 NASA Infrarrojo
SDO 11/02/2010 NASA Observatorio solar
SOFIA 05/2010 NASA y DLR Infrarrojo (aerotransportado)
AMS-02 16/05/2011 Varios Partículas energéticas
Spektr-R – RadioAstron 18/07/2011 Rusia y otros Radioastronomía
Juno 05/08/2011 NASA Estudio de Júpiter
NuSTAR 13/06/2012 NASA Telescopio espectroscópico nuclear conjunto
NEOSSat 15/02/2013 CSA Asteroides y basura espacial
BRITE-A-1 – UniBRITE-1 25/02/2013 Austria Astronomía óptica
BRITE-A-2 – Tugsat-1 25/02/2013 Canadá Astronomía óptica
IRIS 28/06/2013
Hisaki – Sprint-A 14/09/2013 JAXA Ultravioleta
BRITE-PL-1 – LEM 21/11/2013 Polonia Astronomía óptica
Gaia 19/12/2013 ESA Cartografía de la Vía Láctea
BRITE-CA-1 – CAN-X-3 19/06/2014 CSA Astronomía óptica
BRITE-CA-2 – CAN-X-3 19/06/2014 CSA Astronomía óptica
BRITE-PL-2 – Heweliusz 19/08/2014 Polonia Astronomía óptica
ASTROSAT 28/09/2015 India Telescopio de Rayos X, ultravioleta y visible
LISA Pathfinder 03/12/2015 ESA Ondas gravitacionales
DAMPE – Wukong 17/12/2015 China Partículas energéticas
ASTRO-H – Hitomi 17/02/2016 – 24/03/2016 JAXA Telescopio de Rayos X
UFFO 28/04/2016 Varios Rayos Gamma
CHEOPS 18/12/2019 ESA Telescopio. Observatorio. Búsqueda de exoplanetas
James Webb 25/12/2021 NASA-CSA-ESA Infrarrojo y Otros

Astro-2

Tras el éxito científico de la misión Astro-1, Astro-2 fue aprobado como un vuelo de seguimiento. Astro-2 consistió en sólo tres instrumentos, la UIT, HUT y la WUPPE. El HUT se mejoró significativamente para este segundo vuelo, con una nueva capa óptica, que mejora el rendimiento en más de un factor de dos. La misión se inició el 2 de marzo de 1995, y se mantuvo en el aire durante 16 días durante la misión STS-67.

Insignias de la misiónastro21

La galaxia espiral, Júpiter, y las cuatro lunas (un total de seis objetos espaciales), así como las siete estrellas de la insignia simbolizan la designación numérica de su vuelo en la secuencia de la misión del Sistema de Transporte Espacial. Endeavour, con ASTRO-2, se está acelerando por.

Una vez más los telescopios se montaron sobre una paleta Spacelab en la bodega de carga del transbordador. Los Spacelab Herramienta para señalar Sistema, palets, y la aviónica se utilizaron para la unión al traslado y para el control y manejo de datos. Astro-2 también requiere los especialistas de la misión y los especialistas de carga útil para el control de sus operaciones. Un programa de observadores de visitantes también se incluyó como parte de Astro-2.

La misión fue un gran éxito con los telescopios de observación de más de 250 objetos astronómicos y exploró 23 programas diferentes ciencias.

STS-67

Tipo de misión: Astronomía

Operador: NASA

ID COSPAR: 1995-007A

SatCat №: 23500

Duración de la misión: 16 días, 15 horas, 8 minutos, 48 segundos

Distancia recorrida: 11.100.000 6.900.000 kilómetros (millas)

Órbitas completado: 262 [1]

Astronave: El transbordador espacial Endeavour

Masa de carga útil: 13.116 kilogramos (28.916 lb)

Tripulación: 7 miembros.

Inicio de la misión

Fecha de lanzamiento: 2 de marzo de 1995 06:38:13 UTC

Sitio de lanzamiento: Kennedy LC-39A

Fin de la misión

Fecha de aterrizaje: 18 de marzo de 1995, 21:47:01 UTC

Punto de aterrizaje: Edwards pista 22

Sistema de referencia: Geocéntrico

Perigeo: 305 kilómetrosastro22 (190 millas)

Apogeo: 305 kilómetros (190 millas)

Inclinación: 28.45 grados [2]

Período: 91,5 min

De izquierda a derecha – Primera fila: Oswald, Jernigan, Gregory; Fila de atrás: Parise, Lawrence, Grunsfeld, Durrance-

STS-67 fue un vuelo espacial tripulado misión usando transbordador espacial Endeavour que puso en marcha desde el Centro Espacial Kennedy , Florida el 2 de marzo de 1995.

Resumen de la misión

Esfuerzo del transbordador espacial lanza desde el Centro Espacial Kennedy 2 de marzo de 1995

Astro-2 fue la segunda misión Spacelab dedicada a realizar observaciones astronómicas en las regiones espectrales ultravioletas. Se compone de tres instrumentos únicos – el telescopio ultravioleta Hopkins (HUT), el Telescopio de Imagen Ultravioleta (UIT) y el Experimento de Wisconsin ultravioleta Photo-polarímetro (WUPPE). Estos experimentos seleccionar objetivos de una lista de más de 600 y observar objetos que van desde algunos dentro del sistema solar de estrellas individuales, nebulosas, restos de supernovas, galaxias y objetos extragalácticos activos. Estos datos complementado datos recogidos en la misión Astro-1 volado en la misión STS-35 en diciembre de 1990 a bordo del Columbia .

Debido a que la mastro23ayor parte de radiación UV es absorbida por la atmósfera de la Tierra, no puede ser estudiada desde el suelo. La región ultravioleta lejano y extremo del espectro era en gran parte sin explorar antes de Astro-1, pero el conocimiento de todas las longitudes de onda es esencial para obtener una imagen precisa del universo. Astro-2 tenía casi el doble de la duración de su predecesor, y el lanzamiento en un momento diferente del año permitió a los telescopios para ver distintas partes del cielo. La misión fue diseñada para llenar grandes lagunas en la comprensión de los astrónomos del universo y sentar las bases para mayor descubrimiento en el futuro.

Por Middeck, experimentos científicos incluyen la proteína cristalina de la dilatación térmica del recinto Sistema de difusión de vapor Aparato-03 experimento (PCG-TES-03), el Protein Crystal Growth individual térmica caja del sistema-02 (PCG-STES-02), el traslado de Radioaficionados experimento-II (SAREX-II), el experimento de control activo Middeck (MACE), los materiales comerciales dispersión Aparato Instrumentation Technology Associates experimentos-03 (CMIX-03) y el experimento espacial de mediano plazo (MSX).

El experimento de control activo Middeck (MACE) es una carga útil de investigación de ingeniería espacial. Se compone de un giroscopio, ruedas de reacción, una carga útil de precisión apuntando, y una exploración y la carga útil señalar que produce trastornos de movimiento. El objetivo del experimento era probar un sistema de control de bucle cerrado que compensar perturbaciones de movimiento. En órbita, el comandante Stephen S. Oswald y el piloto William G. Gregory utilizan MACE para probar unos 200 situaciones de perturbación de movimiento diferentes a lo largo de 45 horas de pruebas durante la misión. Información MACE será utilizada para diseñar mejores sistemas de control que compensan el movimiento en las futuras naves espaciales.

Dos Get Away especiales (GAS) cargas útiles también estaban a bordo. Eran los botes G-387 y G-388. Este experimento fue patrocinado por la Oficina Espacial de Australia y AUSPACE ltd. Los objetivos fueron hacer observaciones ultravioletas del espacio profundo o galaxias cercanas. Se hicieron estas observaciones para estudiar la estructura de los remanentes de supernova galácticos, la distribución de gas caliente en las nastro24ubes de Magallanes, la emisión de halo galáctico caliente, y de emisión asociado a los flujos de refrigeración galácticos y aviones. Los dos botes de gas estaban interconectados con un cable. 1 bote tenía un conjunto de puerta motorizada que expone un telescopio ultravioleta al espacio cuando se abre. UV filtros reflectantes en la óptica de los telescopios determinan su paso de banda UV. Bote 2 contenía dos grabadoras de vídeo para el almacenamiento y baterías de datos para proporcionar energía experimento. Fue esfuerzo del transbordador espacial vuelo más largo ‘s.

La Astro-2 en órbita

Créditos: STS-67 Crew,NASA

Hace seis años, un grupo de tres telescopios ultravioleta fue puesto en órbita mediante la misión Astro-2 a bordo de la lanzadera espacial Endeavour. Mostrados aquí en su ubicación sobre el muelle de carga de la Endeavour a 350 kilómetros sobre el desierto Australiano, podemos ver el Hopkins Ultraviolet Telescope(HUT), el Ultraviolet Imaging Telescope(UIT) y el Ultraviolet Photo-Polarimeter Experiment (WUPPE). HUT está en frente de los otros instrumentos, junto con un rastreador de estrellas plateado de forma cónica, a la izquierda del grupo de telescopios. La región ultravioleta del espectro electromagnético está situada en longitudes de onda más cortas que la luz azul y no puede ser vista por el ojo humano. Casi toda la luz ultravioleta procedente del cosmos es imposible de detectar en la superficie de la Tierra debido a que es absorbida por el ozono atmosférico. Pero atravesando muy por encima de las nubes y la atmósfera protectora, estos instrumentos pudieron explorar el universo en longitudes de onda más allá del azul.

IEH-1

Las operaciones autónomas de la plataforma SPARTAN se repiten de nuevo en septiembre de 1995 a bordo de la STS 69. Instrumentalmente hablando son equivalentes a las realizadas durante las misiones STS 56 y STS 64, pero en ese momento las observaciones de la corona solar se hacen coincidir con el paso sobre el polo norte solar de la sonda Ulysses, lo que proporciona una visión simultánea de los fenómenos solares desde distintos ángulos. En la bodega de carga se instaló además un paquete de instrumentos denominado IEH-1 (International Extreme-ultraviolet Hitchhicker 1) para complementar y ampliar las observaciones ultraieh11violetas solares y de otros fenómenos cósmicos de altas energías.

STS-69

STS-69 lanzamientos desde el centro espacial Kennedy, 7 de Septiembre de 1995

Tipo de misión: Investigación

Operador: NASA

ID COSPAR: 1995-048A

SatCat №: 23667

Duración de la misión: 10 días, 20 horas, 29 minutos, 56 segundos

Distancia recorrida: 7.200.000 4.500.000 kilómetros (millas)

Órbitas completado:171

El transbordador espacial Endeavour

Masa de carga útil: 11.499 kg (25.351 lb)

Tripulación: tamaño de la tripulación 5 miembros

David M. Walkerieh12
Kenneth Cockrell
James S. Voss
James H. Newman
Michael L. Gernhardt

Fecha de lanzamiento: 7 de septiembre de 1995 15:09:00 UTC

De izquierda a derecha – Sentados: Cockrell, Walker; De pie: Gernhardt Newman, Voss

Sitio de lanzamiento. Kennedy LC-39A

Fin de la misión: fecha de aterrizaje: 18 de septiembre de 1995, 11:38:56 UTC

Punto de aterrizaje: Kennedy SLF pista 33

Sistema de referencia: Geocéntrico

Perigeo 321 kilómetros (199 millas)

Apogeo: 321 kilómetros (199 millas)

Inclinación: 28,4 grados

Período: 91,4 minieh13

STS-69 era un transbordador espacial Endeavour misión, y el segundo tramo de la Instalación Wake Shield (FSM). La misión lanzado desde el Centro Espacial Kennedy, Florida, el 7 de septiembre de 1995. Fue el éxito de los vuelos espaciales tripulados de la NASA número 100, sin incluir los X-15 vuelos.

Caminatas espaciales

  • Voss y Gernhardt – EVA 1
  • EVA 1 Inicio: 16 Septiembre 1995 – 08:20 GMT
  • EVA 1 Fin: 16 Septiembre 1995 – 15:06 GMT
  • Duración: 6 horas y 46 minutos

Resumen de la misión

La tierra azul pálido sirve como telón de fondo para el astronauta Michael Gernhardt, que se adjunta al brazo robótico del transbordador Endeavour ‘s durante una caminata espacial en la misión STS-69 misión en 1995. A diferencia de la caminata espacial los astronautas anteriores, Gernhardt fue capaz de utilizar una lista de verificación brazalete electrónico, un prototipo desarrollado para el montaje de la estación Espacial Internacional.

La misión de 11 días fue el segundo vuelo de la Instalación Wake Shield (FSM), un satélite en forma de platillo que era libre de volar del traslado durante varios días. El propósito de la FSM fue para crecer películas delgadas en un vacío casi perfecto creado por la estela del satélite mientras se movía a través del espacio. La tripulación también desplegó y recuperó el Spartan 201 satélite astronómico, realizó un paseo espacial de seis horas para poner a prueba las técnicas de montaje de la Estación Espacial Internacional y mejoras térmicas probadas realizados en los trajes espaciales utilizados durante los paseos espaciales.

El Spartan 201 sin volante hizo su tercer viaje a bordo de la lanzadera. La misión Spartan 201 era un esfuerzo de investigación científica dirigida a la investigación de la interacción entre el Sol y su viento de partículas cargadas que fluye hacia fuera. El objetivo de Spartan fue estudiar la atmósfera exterior del Sol y su transición hacia el viento solar que constantemente fluye más allá de la Tierra.

STS-69 vio el primer vuelo de la Internacional ultravioleta extremo autoestopista (IEH-1), el primero de los cinco vuelos previstos para medir y controlar las variaciones a largo plazo en la magnitud de la radiación ultravioleta extrema absoluta (EUV) El flujo procedente del Sol, y para estudiar las emisiones de EUV el sistema toro de plasma alrededor de Júpiter originario de su luna Io.ieh14

También a bordo del Endeavour fuera el capilar combinado Loop-2/Gas Asamblea Puente (CAPL-2 / GBA) de carga útil bombeado. Este experimento consistió en la CAPL-2 autoestopista carga útil diseñada como una demostración en órbita de microgravedad de un sistema de refrigeración previsto para el Programa del Sistema de Observación de la Tierra y el almacenamiento de energía térmica-2 de carga útil, que forma parte de un esfuerzo para desarrollar técnicas avanzadas de generación de energía.

Otra carga útil volado con una conexión con el desarrollo de la estación espacial fue la electrólisis Performance Improvement Concepto Estudio (EPICS). Suministro de oxígeno y de hidrógeno por electrólisis del agua en el espacio juega un papel importante en la satisfacción de las necesidades y objetivos de la NASA para futuras misiones espaciales.

Otras cargas útiles a bordo eran los Institutos Nacionales de Salud- células-4 (NIH-C4) experimento que investiga la pérdida de hueso durante los vuelos espaciales; la Investigación Biológica en frasco-6 (BRIC-6) que estudia el mecanismo de la gravedad de detección dentro de las células de mamíferos. También voladores eran dos experimentos comerciales. (CMIX-4), cuyos objetivos incluían análisis del cambio celular en condiciones de microgravedad, junto con los estudios de trastornos del desarrollo neuro-muscular y la Comercial Bioprocesamiento Genérico Aparato-7 (GCBA-7). GCBA era una carga útil secundaria que sirvió como punto de incubadora y la recopilación de datos para los experimentos en las pruebas de productos farmacéuticos y de la biomedicina, el procesamiento biológico y la biotecnología, la agricultura y el medio ambiente.

El almacenamiento de energía térmica (TES-2) experimento fue también parte de la CAPL-2 / GBA-6. La carga útil de TES-2 fue diseñado para proporcionar datos para comprender el comportamiento de larga duración de sales de fluoruro de almacenamiento de energía térmica que se someten a repiten fusión y la congelación en condiciones de microgravedad. La carga útil de TES-2 se diseñó para estudiar el comportamiento de microgravedad de huecos en fluoruro de litiofluoruro de calcio eutéctica.

WIND

Otros nombres: CGS/Wind Clementine

Organización: NASA

Fecha de lanzamiento: 1 de noviembre de 1994

Vehículo de lanzamiento: Deltawind1

Sitio de lanzamiento: Cabo Cañaveral

Aplicación: Observación terrestre

Masa: 1195 kg

NSSDC ID: 1994-071A

Tipo de órbita: Polar

Tasa de datos: 5,5 o 11,1 kbps

Wind es un satélite artificial de la NASA lanzado el 1 de noviembre de 1994 desde Cabo Cañaveral mediante un cohete Delta a una órbita polar.

Wind es el satélite gemelo del satélite Polar y está dedicado a medir el viento solar y el campo magnético. Los objetivos concretos de Wind son:

  • estudiar el plasma, las partículas energéticas y el campo magnético.
  • determinar el flujo magnético de salida de la magnetosfera en la zona de la cola magnética.
  • estudiar los procesos con plasma implicado en el viento solar en la zona cercana a la Tierra.
  • realizar observaciones en el plano de la eclíptica para ser utilizadas en estudios heliosféricos.

El satélite llevó el primer instrumento ruso en volar en una nave estadounidense desde 1987. La alimentación eléctrica era producida por las células solares que recubrían el cuerpo del satélite, del que salían varias antenas y mástiles que soportaban instrumentos. Estaba estabilizado por rotación (20 revoluciones por minuto). Los datos eran guardados por grabadoras de cinta hasta ser transmitidos a la Red del Espacio Profundo a velocidades de 5,5 o 11,1 kbps.wind2

Llevaba los siguientes instrumentos:

  • EPACT (Energetic Particle Acceleration, Composition and Transport): mide la aceleración de las partículas energéticas y los procesos de transporte en las erupciones solares, el medio interplanetario, la magnetosfera y los rayos cósmicos.
  • Magnetic Field Investigation (MFI): magnetómetros utilizados para estudiar estructuras a gran escala y la fluctuación de los campos magnéticos interplanetarios en función del tiempo. Disponen de siete rangos de medida: 6, 64, 256, 1024, 4096, 16.384 y 65.536 nT con una resolución de hasta 2,5-4 para 1 nT.
  • Radio and Plasma Wave Experiment (WAVES): experimento francés de ondas de radio y plasma para medir la intensidad y dirección de llegada de ondas de radio y plasma con origen en el viento solar cercano a la Tierra.
  • Solar Wind Ion Composition Spectrometer (SWICS) / Suprathermal Ion Composition Spectrometer (STICS): para medir la composición ionica y la carga del viento solar, la velocidad, densidad y temperatura de los iones de He4++, medir la velocidad media de los protones del viento solar y medir la distribución de energía de algunas especies iónicas.
  • Solar Wind Experiment (SWE): espectrómetro de seis ejes que proporciona funciones tridimensionales de la distribución de velocidad para iones y electrones con una alta resolución temporal.
  • Transient Gamma Ray and EUV Spectrometer (TGRS): para hacer observaciones de alta resolución de eventos de rayos gamma transitorios en el rango de energía entre 20 keV y 10 MeV.
  • 3-D plasma and energetic particle analyzer (3DP): mide la distribución tridimensional del plasma y los electrones e iones energéticos con alta resolución temporal, angular y de energía en un rango de entre 10 eV y 5 MeV.
  • KONUS: detector de rayos gamma.

El Global Geoespacio Ciencia (SGG) del viento por satélite es una nave espacial NASA lanzada en 04:31:00 EST el 1 de noviembre de 1994, 17B plataforma de lanzamiento en la estación de Cabo Cañaveral de la Fuerza Aérea (CCAFS) en Merritt Island, Florida a bordo de un Douglas McDonnell Delta II 7925-10 cohete. El viento fue diseñado y fabricado por Martin Marietta División Espacial Astro en East Windsor, Nueva Jersey. El satélite tiene un giro estabilizado cilíndrica satélite con un diámetro de 2,4 m y una altura de 1,8 m.[1]wind3

Fue desplegado para estudiar radio y plasma que se producen en el viento solar y de la magnetosfera de la Tierra antes de que el viento solar llega a la Tierra. La misión original de la nave estaba en órbita alrededor del Sol en el L 1 punto de Lagrange, pero esto se retrasó cuando el SOHO y ACE, naves espaciales fueron enviados a la misma ubicación. El viento ha estado en L 1 de forma continua desde 2004, y todavía está en funcionamiento a partir de marzo 22, 2016.[10] El viento actualmente tiene suficiente combustible para durar más o menos 53 años en L1. El viento sigue produciendo investigaciones pertinentes, con sus datos de haber contribuido a más de 1600 publicaciones desde 2009 y más de 2200 publicaciones anteriores a 2009, al 22 de marzo, 2016 (sin incluir publicaciones de 2016), el número total de publicaciones, ya sea directa o indirectamente, a partir de datos del viento es de ~ 3903.[10] Tenga en cuenta que muchas de estas publicaciones utilizadas datos de viento indirectamente por citar el conjunto de datos OMNI en CDAWeb , que se basa en gran medida en mediciones de viento.

Las operaciones de la misión se llevan a cabo desde el Centro de Operaciones Multi-Misión (MMOC) en el edificio 14 en el Goddard Space Flight Center en Greenbelt, Maryland.

Los datos de viento se puede acceder mediante la SPEDAS software.

El viento es el satélite gemelo del SGG polar .

Los objetivos científicos de la misión del viento

  • Proporcionar el estudio del plasma completo, partículas energéticas, y la entrada del campo magnético para los estudios de la ionosfera y la magnetosfera.
  • Determinar la salida magnetosférica al espacio interplanetario en la región aguas arriba.
  • Investigar los procesos de plasma básicos que se producen en el viento solar cercano a la Tierra.
  • Proporcionar observaciones plano de la eclíptica línea de base que se utilizará en las latitudes heliosféricos de ULISES.

Los instrumentos científicos de la nave espacial del viento

El objetivo de ISTP es entender el comportamiento del Sol y la Tierra de plasma medio ambiente con el fin de predecir la forma en la Tierra ‘atmósfera de s responderá a los cambios en el viento solar condiciones. Viento “objetiva s es medir las propiedades del viento solar antes de que se llega a la Tierra. La nave espacial del viento tiene una gran variedad de instrumentos, incluyendo: Konus, [4] La investigación de campo magnético del viento (IMF),[3] el viento solar y supratérmica Ion Composición Experimento (SMS),[5] Las Partículas Energéticas: Aceleración, Composición, y Transportes (EPACT) investigación,[2] el Experimento de viento solar (SWE),[6] una imagen tridimensional de plasma e investigación partículas Energéticas (3DP),[7] el transitorio de rayos Gamma (Espectrómetro TGRS),[8] y la Radio y plasma Wave Investigación (ondas).[9] los instrumentos Konus y TGRS son principalmente para-rayos gamma de alta energía y de fotones observaciones de las erupciones solares o las explosiones de rayos gamma . El experimento SMS mide las proporciones de masa y masa-carga de iones pesados. Los experimentos SWE y 3DP tienen el propósito de medir / analizar la energía más baja (por debajo de 10 MeV) del viento solar protones y electrones . Las olas y experimentos IMF fueron diseñados para medir las eléctricas y campos magnéticos observados en el viento solar. En conjunto, la suite de la nave espacial de los instrumentos de viento permite obtener una descripción completa de los fenómenos de plasma en el plano viento solar de la eclíptica.

Viento / ONDASwind4

Tiempo de dominio muestreador

Los campos eléctricos detectores de las olas Instrumento de viento[9] se componen de tres campos eléctricos ortogonales antenas dipolo, dos en el plano de giro (más o menos al plano de la eclíptica) de la nave espacial y uno a lo largo del eje de rotación. La suite ONDAS completas de instrumentos incluye cinco receptores totales incluyendo: receptor de baja frecuencia FFT llamado FFT (0,3 Hz a 11 kHz), Receptor de ruido térmico llama TNR (4-256 kHz), Radio de recepción de radio llamado RAD1 1 (20-1040 kHz), radio de banda del receptor 2 llamado RAD2 (1,075 a 13,825 MHz), y el dominio Sampler tiempo llamado TDS (diseñado y construido por la Universidad de Minnesota). Cuanto más largo del plano de giro de dos antenas, que se define como Ex, es 100 m de punta a punta, mientras que el más corto, que se define como Ey, es de 15 metros de punta a punta. El dipolo eje de giro, que se define como Ez, es más o menos 12 metros de punta a punta. Al contabilizar los potenciales nave espacial, estas longitudes de antena se ajustan a ~ 41,1 m, 3,79 m ~, y ~ 2,17 m [Nota: éstos están sujetos a cambios y sólo estimaciones y no necesariamente exacta con dos decimales]. Las ondas Instrumento de viento también detecta los campos magnéticos utilizando tres ortogonales magnetómetros de bobina de búsqueda (diseñado y construido por la Universidad de Iowa). Las bobinas de búsqueda XY están orientados a ser paralela a la antena dipolo XY. Las bobinas de búsqueda permiten mediciones del campo magnético de alta frecuencia (definidos como B x, B y y B z). Las ONDAS Z-Axis es paralela anti-to-Z GSE (geocéntrica solar eclíptica dirección). Por lo tanto cualquier rotación se puede hacer sobre el eje Z en el sentido euleriano normal, seguida por un cambio de signo en el Z-componente de cualquier GSE vector giran en coordenadas olas.

Capturas Electric (y magnético) de forma de onda de campo se pueden obtener del receptor de dominio de tiempo Sampler (TDS).[9] muestras TDS son una captura de forma de onda de 2048 puntos (16384 puntos en la STEREO nave espacial) por componente de campo. Las formas de onda son medidas de campo eléctrico en función del tiempo. En las frecuencias de muestreo más altas, el ayuno (TDSF) muestreador se ejecuta en ~ 120.000 muestras por segundo (sps) y el lento (STT) muestreador funciona a ~ 7.500 sps. TDSF muestras se componen de dos componentes de campo eléctrico (normalmente E x y E y) mientras que las muestras TDSS se componen de cuatro vectores, ya sea de tres eléctrica y un campo magnético o tres magnético y un campo eléctrico. El receptor TDSF tiene poca o ninguna ganancia por debajo de aproximadamente ~ 120 Hz y los magnetómetros de bobina de búsqueda rodar fuera del orden de ~ 3,3 Hz.[11]

Receptor de ruido térmicowind5

Las medidas de TNR ~ campos eléctricos 4-256 kHz en un máximo de 5 bandas de frecuencia logarítmica espaciados, aunque normalmente sólo se fija en 3 bandas, a partir de 32 o 16 canales por banda, con un 7 nV / (Hz)1/2 sensibilidad, 400 Hz a 6,4 de ancho de banda kHz, y el rango dinámico total de más de 100 dB.[9] Los datos han sido tomados por dos receptores multicanal, que nominalmente muestra para 20 ms a una frecuencia de muestreo de 1 MHz (ver[9] para más información). El TNR se utiliza a menudo para determinar la densidad local del plasma mediante la observación de la línea de plasma, una emisión a la frecuencia local del plasma debido a una respuesta de ruido térmico de la antena dipolo de alambre. Hay que señalar que la observación de la línea de plasma requiere la antena dipolo para ser más largo que el local de la longitud de Debye , λDe. [2] Para las condiciones típicas en el viento solar lambda De ~ 7-20 m, mucho más corto que el cable de antena dipolo el viento. La mayor parte de esta sección fue tomada de.[11]

Viento / 3DP

El Instrumento de viento / 3DP (diseñado y construido en el Berkeley Laboratorio de Ciencias Espaciales) fue diseñado para realizar mediciones tridimensionales completos de las distribuciones de supratérmica electrones e iones en el viento solar. El instrumento incluye tres matrices, cada uno compuesto de un par de de doble extremo semi-conductores telescopios cada uno con dos o tres estrechamente intercaladas pasivados de iones implantados silicio detectores, que miden los electrones y los iones por encima de ~ 20 keV. El instrumento también tiene chistera simétrica sección esférica electrostática (ES) analizadores con placa microcanal detectores (MCP) se utilizan para medir los iones y electrones a partir de ~ 3 eV a 30 keV. [7] Los dos tipos de detectores tienen reions energía que van desde ? e / e ≈ 0.3 para los telescopios de estado sólido (SST) y? e / e ≈ 0.2 para la chistera analizadores ES. Las resoluciones angulares son 22,5 ° x 36 ° para el SST y 5,6 ° (cerca de la eclíptica) a 22,5 ° para la chistera analizadores ES. Los detectores de partículas pueden obtener una cobertura completa estereorradián 4π en una (la mitad) de giro completo (~ 3 s) de la SST (chistera analizadores ES). La mayor parte de esta sección fue tomada de. [11]

Analizadores electrostáticos

Los conjuntos de detectores están montados en dos brazos opuestos, cada uno de 0,5 m de longitud. La parte superior del sombrero analizador ES se componen de cuatro detectores separados, cada uno con diferentes factores de geometría para cubrir diferentes rangos de energías. Los detectores de electrones, Jes s, y detectores de iones, PESA, se separan en cada uno bajo (L) y detectores (H) de alta energía. Los analizadores de H y L contienen 24 y 16 ánodos discretos, respectivamente. El ánodo de diseño proporciona una resolución angular de 5,6 ° dentro de ± 22,5 ° del plano de la eclíptica (aumenta a 22,5 ° en incidencia normal al plano de la eclíptica). Los analizadores son barridas de manera logarítmica de la energía y de la muestra contadores a 1024 muestras / centrifugado (~ 3 ms período de la muestra). Así, los analizadores se pueden fijar a la muestra 64 muestras por barrido de energía a los 16 barridos por tirada o 32 muestras por barrido de energía en 32 barridos por tirada, etc. Los detectores se definen como sigue:

  • EESA baja (EL): cubre los electrones de ~ 3 eV a ~ 1 keV (Estos valores varían de una estructura momento a la estructura momento dependiendo de la duración del muestreo de datos, el potencial de la nave espacial, y si en ráfaga o modo de encuesta El alcance típico es de ~ 5. eV a ~ 1,11 keV. [11] ) con una resolución de fase de 11,25 ° giro. EL tiene un factor geométrico total de 1,3 x 10 -2 E cm 2 -SR (donde E es la energía en eV) con un casi idéntico 180 ° campo de visión (FOV), radial a la nave espacial, a la de PESA-L.
  • EESA alta (EH): cubre electrones de ~ 200 eV a ~ 30 keV (aunque valores típicos varían de un mínimo de ~ 137 eV a un máximo de ~ 28 keV) en un barrido de energía 32 muestra cada 11,25 ° de giro nave espacial. EH tiene un factor geométrico total de 2,0 x 10 cm -1 E 2 -SR, eficiencia MCP de alrededor de 70% y la transmisión de la red de aproximadamente 73%. EH tiene un FOV tangente 360 ° planar a la superficie de la nave espacial que puede ser electro estáticamente desviado en un cono de hasta ± 45 ° fuera de su plano normal.
  • PESA baja (PL): cubre iones con un barrido de energía 14 muestra (Tenga en cuenta que en el modo de encuesta las estructuras de datos suelen tener 25 puntos de datos a las 14 energías diferentes, mientras que en el modo de ráfaga se toman 64 puntos de datos a las 14 energías diferentes.) A partir de ~ 100 eV a ~ 10 keV (a menudo energías van desde ~ 700 eV a ~ 6 keV) cada 5,6 ° de giro nave espacial. PL tiene un factor geométrico total de sólo 1,6 x 10 -4 cm E 2 -SR pero una respuesta de ángulo energía idéntica a la de PESA-H. Mientras que en el viento solar, PL se reorienta a lo largo de la dirección de flujo mayor para capturar el flujo de viento solar que da lugar a una estrecha gama de cobertura pitch-ángulo.
  • PESA alta (PH): cubre iones con un barrido de energía 15 de la muestra a partir de tan ~ 80 eV hasta un máximo de ~ 30 keV (rango de energía típica es ~ 500 eV a ~ 28 keV [11] ) cada 11,25 ° de la nave espacial ( tenga en cuenta que PH tiene varios modos de datos donde el número de puntos de datos por bin de energía puede ser cualquiera de los siguientes: 121, 97, 88, 65, o 56.). PH tiene un factor geométrico total de 1,5 x 10 -2 E cm 2 -SR con una eficiencia de MCP de alrededor de 50% y la transmisión posterior entrada rejilla de aproximadamente 75%.

Telescopios de estado sólido

Los detectores de SST constan de tres matrices de telescopios de dos extremos, cada uno de los cuales está compuesto de cualquiera de un par o triplete de cerca intercalados semi-conductores detectores. El detector de centro (grueso o T) del triplete es 1,5 cm 2 de superficie, 500 m de espesor, mientras que los otros detectores, lámina (F) y abierto (O), son la misma zona pero sólo 300 m de espesor. Una dirección de los telescopios está cubierto de una delgada lexan papel de aluminio, ~ 1.500 Å de aluminio evaporó a cada lado para eliminar por completo la luz solar, (SST-Foil) donde fue elegido el espesor de detener protones hasta la energía de los electrones (~ 400 keV ). Los electrones son esencialmente afectadas por la lámina. En el lado opuesto (SST-abierto), un común imán escoba se utiliza para rechazar los electrones por debajo de ~ 400 keV de entrar, pero deja los iones esencialmente afectadas. Por lo tanto, si no hay partículas de mayor energía penetran en las paredes del detector, el SST-Foil debe medir solamente los electrones y los iones sólo SST-abiertos. Cada telescopio de doble extremo tiene dos 36 ° x 20 ° FWHM FOV, por tanto, cada extremo de los cinco telescopios puede cubrir un pedazo de espacio 180 ° x 20 °. Telescopio 6 ve el mismo ángulo para hacer girar el eje como telescopio 2, pero ambos extremos del telescopio 2 tener una cubierta de tántalo perforado para reducir el factor geométrico por un factor de 10 para medir los flujos más intensos. Las estructuras de datos SST-Foil típicamente tienen 7 contenedores de energía, cada uno con 48 puntos de datos, mientras que el SST-abierto tiene 9 contenedores de energía cada uno con 48 puntos de datos. Ambos detectores tienen resoluciones de energía de? E / E ≈ 30%. La mayor parte de esta sección fue tomada de.[11]

Viento / IMF

El instrumento de campo magnético (IMF) a bordo del viento[3] se compone de dos triaxiales magnetómetros de saturación. La IMF tiene un rango dinámico de ± 4 nT a ± 65.536 nT, resolución digital que van desde ± 0,001 nT a ± 16 nT, el nivel de ruido del sensor de <0,006 nT (RMS) de las señales de 0-10 Hz y frecuencias de muestreo varía de 44 muestras por segundo (sps) en la memoria instantánea a 10,87 sps en modo estándar. también están disponibles en las medias a los 3 segundos, 1 minuto y 1 hora de los datos. Los datos muestreados a tasas más altas (es decir,> 10 sps) se conoce como Tiempo de alta resolución (HTR) de datos en algunos estudios.[13] [14]

Viento / SWE

La nave espacial del viento tiene instrumentos de iones dos tazas de Faraday (FC).[6] Los bloques FC SWE puede producir reducción de las funciones de distribución de iones con hasta un 20 angular y 30 de energía por contenedores de carga cada 92 segundos.[15] Cada sensor tiene un ~ 15 ° incline por encima o por debajo del plano de giro y un rango de energía de ~ 150 eV a ~ 8 keV. Una abertura circular limita los efectos de la aberración cerca de la rejilla de modulador y define el área de recogida de las placas colectoras en cada FC. La muestra de FCS a una energía de juego para cada rotación de la nave espacial, a continuación, intensificar la energía para la siguiente rotación. Puesto que hay un máximo de 30 contenedores de energía para estos detectores, una función completa de distribución reducida requiere 30 rotaciones o un poco más de 90 segundos.

Algunos descubrimientos y / o contribuciones a la ciencia por la nave espacial del viento

  1. La observación de la relación entre las interacciones a gran escala del viento solar-magnetosfera y la reconexión magnética en la magnetopausa terrestre.[16]
  2. Primer estudio estadístico de alta frecuencia (≥1 kHz) las fluctuaciones del campo eléctrico en la rampa de interplanetarias choques (IP).[17] El estudio encontró que la amplitud de las ondas acústicas de iones (IAWS) aumentó con el aumento de modo rápido del número de Mach y de choque de compresión proporción. También encontraron que el IAWS tenía la más alta probabilidad de ocurrencia en la región de rampa.
  3. La observación de la ola más grande Whistler usando un magnetómetro bobina de búsqueda en los cinturones de radiación.[18] [19]
  4. Primera observación de shocklets aguas arriba de un choque IP cuasi-perpendiculares.[13]
  5. Las primeras observaciones simultáneas de Whistler olas modo con distribuciones de electrones inestables a la marmota del flujo de calor inestabilidad.[13]
  6. Primera observación de una onda solitaria electrostática en un choque IP con una amplitud superior a 100 mV / m.[14]
  7. Primera observación de electrones Berstein -como las olas en una descarga de IP [14]
  8. Primera observación de la región de origen de un Tipo II IP de radio de ráfaga.[20]
  9. Primera evidencia de Langmuir de onda de acoplamiento a las ondas en modo Z.[21]
  10. Primera evidencia para sugerir que las estructuras embrionarias bipolares observados en la región de transición de choque son consistentes con BGK modos o electrones espacio de fases agujeros.[22]
  11. Primera evidencia de una correlación entre la amplitud de agujeros espacio de fase de electrones y el cambio en la temperatura de los electrones. [23]
  12. Primera evidencia de interacciones de tres ondas en la parte terrestre foreshock utilizando bi-coherencia. [24] [25]
  13. Primera evidencia de protones de temperatura de anisotropía limitaciones debidas a espejo, manguera de bomberos, y el ciclotrón de iones inestabilidades.[26]
  14. Primera prueba de disipación de Alfvén-ciclotrón.[27]
  15. En primer lugar (compartido con STEREO nave espacial) la observación de captura de electrones por una gran amplitud de la onda de la marmota en los cinturones de radiación[28] (también visto en las observaciones STEREO[29] ).
  16. Primera observación de Langmuir y las olas en la marmota lunar estela.[30]
  17. Primera evidencia de una prueba directa de resonancia de ciclotrón de electrones con las ondas modo marmota impulsados por un flujo de calor inestabilidad en el viento solar.[31]
  18. Primera evidencia de la generación del haz de iones alineados campo local foreshock ondas electromagnéticas llama estructuras cortas de gran amplitud magnéticos o SLAMS, que son solitones olas -como en el magnetosonic modo.[32]

Science destaca en las noticias

Premioswind6

  • El equipo de operaciones de viento, NASA Goddard Space Flight Center, Greenbelt, Maryland, recibió el premio AIAA Espacio Operaciones y Mantenimiento , el 2 de septiembre de 2015. El premio honra del equipo “ingenio excepcional y sacrificio personal en la recuperación de la nave espacial del viento de la NASA.” Jacqueline Snell – gerente de ingeniería de viento, Geotail, y las misiones de la ECA – aceptó el premio en nombre del equipo. Premio detalles
  • El equipo de operaciones de viento, NASA Goddard Space Flight Center, Greenbelt, Maryland, recibió el premio al éxito de la NASA Grupo para la recuperación del procesador de comandos y la actitud de la nave espacial del viento. Premio detalles

ALEXIS

Array of Low Energy X-ray Imaging Sensors

Organización: Laboratorio Nacional Los Álamosalexis1

Fecha de lanzamiento: 25 de abril de 1993

Aplicación: Observatorio espacial

Masa: 115 Kg

Dimensiones: Diámetro máximo: 0,6 m

Propulsión: Sin Propulsión

Equipo: 2146 retroreflectores “esquina de cubo”

Tipo de órbita: Circular

Inclinación: 69.8 Grados

Período orbital: 99,7 minutos

Periastro: 741 Km

Array of Low Energy X-ray Imaging Sensors ó ALEXIS fue un observatorio espacial de rayos X estadounidense construido por el laboratorio Nacional Los Álamos.

Fue diseñado para cartografiar con alta resolución fuentes de rayos X de baja energía. Durante el lanzamiento uno de los paneles solares se rompió, con lo que se perdió el control de satélite de manera temporal, pero los controladores consiguieron restablecer el contacto con la nave y ponerla en funcionamiento una vez en órbita.

La computadora de a bordo consistía en un procesador 80C86 con una memoria de estado sólido de 100 Mbytes. El observatorio se orientaba en dirección antisolar y giraba a 2 revoluciones por minuto para su estabilización. La precisión del apuntado era de 0,1 grados.

El instrumento principal consistía en un monitor de rayos X de baja energía compuesto por 6 telescopios de incidencia normal ajustados para detectar bandas estrechas de energía a 66, 71 y 93 eV.

ALEXIS fue lanzado el 25 de abril de 1993 en un cohete Pegasus. Tras 12 años en funcionamiento, las condiciones del observatorio espacial estaban degradadas hasta el punto de ser apenas operativo. El 29 de abril de 2005 el satélite dejó de ser rastreado y no ha vuelto a contactarse con él.

Satélite astronomía de rayos x de América. ALEXIS era una pequeña nave espacial construida por el Laboratorio Nacional de Los Alamos (LANL). Su misión era proporcionar mapas de alta resolución de fuentes de rayos X de baja energía astronómicos.alexis2

Cuatro paneles solares desplegados de la nave espacial proporcionan 50 vatios de potencia media y pagan cuatro baterías de NiCd. El equipo de comandos utilizada redundantes procesadores 80C86 y tenía una memoria de masa de 100 Mbytes EDAC almacenamiento de estado sólido. Comunicaciones S-Band tuvieron una tasa de enlace descendente de 750 kbps y una tasa de subida de 9,6 kbps. El bus señaló la carga útil en la dirección anti-sol y hace girar a 2 rpm sobre que dom línea. Sun sensores y las extremidades del sensor proporciona los conocimientos actitud de 0,1 grados. La actitud se controla mediante bobinas magnéticas de par. La única estación de tierra instalada en el LANL tenía una antena de 2 m.

La carga útil primaria era un monitor de rayos X ultrasoft que consistía en 6 telescopios de incidencia normal compactos sintonizados en bandas estrechas centradas en 66, 71 y 93 eV.

El 21 de enero de 1997 ALEXIS continuó operando nominalmente, el envío de los resultados de las observaciones del telescopio EUV en cada pase. ALEXIS identificó una serie de estallidos transitorios casi en tiempo real y, a veces era capaz de suministrar este tipo de oportunidades de destino para los operadores del satélite EUVE que contenían instrumentos que eran sensibles a longitudes de onda similares. Durante ocasionales “tiempos calientes” cuando ALEXIS fue iluminado por el sol durante el 100% de su órbita, los telescopios dejaron de operar para evitar el sobrecalentamiento de la nave espacial (normalmente la nave espacial pasó a través de la sombra de la tierra.) Esta anomalía fue probablemente causado por un desgarro en el aislamiento térmico, asociado con el daño panel solar que se produjo durante el lanzamiento. El costo de la nave espacial se informó a ser de aproximadamente $ 17 millones.

Familia: astronomía, órbita terrestre media, de rayos X satélite astronómico País:. EE.UU. . Vehículos de lanzamiento: Pegasus. Sitios de lanzamiento: Punto Arguello WADZ. Agencia: AeroAstro.

Estatuto de la misión S / C:

  • La nave, lanzada en abril de 1993, operado por casi 12 años antes de ser dado de baja el 29 de abril de 2005. La vida útil de un año se ha superado con mucho, (Ref. 2) . 7) 8) 9)
  • En agosto de 2003, el satélite ALEXIS había completado con éxito su 10º año de operaciones científicas en órbita. 10)
  • Hasta 1999 la misión ALEXIS estaba operando nominalmente, que superó todas las expectativas, a pesar de que el incidente de lanzamiento grave con la matriz de paneles solares. Un sistema de software completamente nuevo (en el suelo) estaba en su lugar para el cálculo de S / C actitud, fundamental para el funcionamiento a bordo de los telescopios de rayos-X. Más del 80 Gbytes de datos de la misión de haber sido recibido hasta el momento. 11) 12) 13) 14)
  • Fallos de memoria RAM de doble puerta en el otoño de 1999 han dado lugar a los datos sólo están disponibles a partir de pares de telescopios # 1 y # 2 y del experimento Barbanegra. calidad de los datos de los telescopios ha sido degradante máxima como la solar acercado debido al aumento de los fondos de partículas.
  • En abril de 1998, la nave espacial ALEXIS marcó su 5 º año en órbita. Una clave para la durabilidad ALEXIS ‘ha sido el diseño de bus innovadora, de baja potencia proporcionada por AeroAstro y las innovaciones de la compañía en el sistema de telemetría, lo que hizo ALEXIS una nave espacial más simple de operar. 15)
  • A finales de julio de 1993, las operaciones de satélites había restablecido el pleno a través de la implementación de nuevos procedimientos para el control de actitud. Las operaciones científicas con los dos experimentos a bordo comenzaron en ese momento.
  • ALEXIS tuvo un comienzo incierto. Uno de los paneles solares del satélite liberó de su fijación bisagra durante el lanzamiento; un análisis posterior mostró la bisagra probablemente había sufrido daños durante las pruebas en tierra, y las vibraciones de lanzamiento fueron la última gota. Sólo los cables eléctricos y un cable de guía mantienen el panel adjunto. Como resultado de los paneles solares dañados, la nave espacial se contrajo cierta oscilación -que reduce la información actitud precisa. 16)

Complemento del sensor: (Alexis, Barbanegra)

La carga útil ALEXIS consiste en un conjunto de telescopios de rayos X ultrasuave y un VHF de alta velocidad receptor / digitalizador con el nombre de Barbanegra.

ALEXIS (matriz de Low rayos X de energía sensores de imagen):

El instrumento tiene el mismo nombre que el S / C. El sistema de telescopios ALEXIS se compone de una unidad DPU (Procesamiento de datos que proporciona la conmutación y condicionado energía de baja tensión y alta tensión para los telescopios de ALEXIS, decodificación de comandos, distribución y todo el procesamiento de datos a bordo, FEE (Front End Electronics) que surte el efecto digitalización de pulso y transformación primaria, y los telescopios que contienen espejos, filtros y detectores de placa de microcanales.alexis3

Alexis es un instrumento orientado hacia el exterior para la detección de señales astrofísicas. El instrumento es un monitor de rayos X ultrasuave, que consta de seis telescopios de incidencia normal compactos sintonizados para acotar bandas centradas en 66, 71 y 93 eV. Los 66 y 71 eV anchos de banda se centran en un conjunto de líneas de emisión de Fe IX-XII. La banda 93 eV, aunque está diseñado como un canal continuo, incluye características de la línea de Fe XXIII 10 7 K plasma.

Los seis ALEXIS EUV (telescopios ultravioleta extremo) están dispuestos en pares que cubren tres superposiciones de 33º FOV. Durante cada 45 segundos giro de la S / C, ALEXIS supervisa todo el hemisferio antisolar. Cada telescopio consiste en un espejo esférico con un Mo-Si capas microestructura sintético (LSM) o revestimiento de múltiples capas, un detector de placa de perfil microcanal curvado situado en foco primario del telescopio, un filtro UV fondo-rechazo, de electrones rechazar imanes en la abertura de telescopio, y la electrónica de procesamiento de imagen de lectura.

Figura : Vista transversal de un telescopio ALEXIS (Crédito de la imagen:. LANL, Ref 14)

El recinto de concentración geométrica de cada telescopio es de aproximadamente 25 cm2, con una resolución esférica aberración limitante a aproximadamente 0,25º s. La resolución de cada telescopio se limita a aproximadamente 0,5º diámetro. Los detectores de ALEXIS son de doble placa, frente curvo enfrentado, placas de microcanales (MCP) se combina con cuña y tiras resistente ánodos. Los dos MCP, de 46 mm de diámetro, son detectores de imágenes de fotones individuales, cada uno con 12,5 micras de diámetro canales.

Figura 6: detector de MCP curvada de instrumento ALEXIS (Crédito de la imagen: LANL)alexis4

La masa del instrumento ALEXIS es de 45 kg, potencia = 45 W; la velocidad de datos media es de 10 kbit / s de datos de eventos. Posición y hora de llegada se registran para cada evento (fotón detectado, etc.). Los objetivos de medición:. Cartografiar el fondo difuso en tres bandas, la realización de una encuesta de banda estrecha de las fuentes puntuales, en busca de fenómenos transitorios, y la vigilancia de las fuentes de rayos X ultrasoft variables 17) 18)

Barbanegra:

Esta carga está diseñada para hacer observaciones de frecuencia de radio en la banda de VHF. Está formado principalmente por dos antenas monopolo seleccionables, un receptor de banda seleccionable, y una banda ancha (150 MS / s) digitalizador. Otros componentes de la carga útil incluyen canales de banda estrecha, un circuito de disparo de banda ancha, y dos conjuntos de fotodiodos simples.

El instrumento analiza las señales emitidas cerca de la Tierra. Blackbeard es un experimento de frecuencia de radio (RF) con el objetivo de estudiar distorsión y la interferencia efectos sobre las señales de VHF transionospheric transitorios, tales como la iluminación y los pulsos artificiales. El instrumento detecta perturbaciones en la ionosfera; se puede hacer una distinción entre las distorsiones resultantes de trayectos múltiples perturbaciones coherentes a gran escala y de las perturbaciones aleatorias en pequeña escala a la ionosferaalexis5. Los experimentos específicos de Blackbeard incluyen:

– Mediciones de VHF de banda ancha de señales transitorias procedentes de un faro de tierra controlada por impulsos, para caracterizar la distorsión ionosférica de banda ancha.

– Mediciones de banda estrecha en ondas métricas de CW-señales de baliza de una matriz de tierra interferometría multichord, para caracterizar la estructura de la ionosfera que contribuye a la distorsión de transmisión.

– Topografía sobres de energía de un rayo y la interferencia hecha por el hombre en las bandas de VHF seleccionables, para los propósitos de fondo de rechazo.

Barbanegra operación consiste en la digitalización de 150 MHz a bordo durante 0,1 s en unalexis6 modo de recepción de banda ancha; o 50 kHz para la digitalización de 320 s en un modo de recepción de banda estrecha; o 120 kHz digitalización efectiva durante 130 s en un modo de levantamiento de potencia-sobre. – El modo de banda ancha tiene anchos de banda seleccionables hasta 65 MHz dentro de los intervalos 25 a 100 MHz y 100-175 MHz, con un máximo de 30 dB SNR. El modo de banda estrecha tiene ocho bandas seleccionables 4 kHz entre 32 y 36 MHz, con un máximo 40 dB SNR y resolución Doppler 0,1 Hz. la operación de modo mixto está disponible en el que se recogen los datos de banda estrecha y banda ancha para permitir la distorsión de RF correlacionada y análisis de la estructura de la ionosfera.

El instrumento Barbanegra observado explosiones de radio extraños llamados tips sobre el tema (pares de impulsos Trans-ionosféricos). Estas señales extrañas son las más intensas fuentes de radio de la Tierra que pueden ser mucho más fuerte que un rayo típico. A continuación, en 1996, los investigadores informaron de LANL las primeras observaciones simultáneas de Barbanegra y múltiples mediciones de estaciones en tierra de tips sobre el tema. La nueva evidencia sugiere que tipps provienen de tormentas eléctricas y probablemente comprenden un evento atmosférico y sus reflexiones fuera de la Tierra. 19) 20) 21)

Spartan

Spartan

Spartan (satélite)

El Spartan-201 siendo recuperadospartan1

Organización: NASA

Vehículo de lanzamiento: Transbordador espacial

Aplicación: Observatorio espacial

Masa: Aproximadamente 1200 kg

Spartan (acrónimo de Shuttle Point Autonomous Research Tool for Astronomy) es un satélite artificial reutilizable usado como observatorio espacial y diseñado para ser soltado y recuperado por un transbordador espacial mediante el brazo robótico.

El Spartan más utilizado fue el Spartan-201 con los telescopios UVCS y WLC, el espectrómetro SAO/Cambridge y el coronógrafo de luz blanca HAO/Boulder. El equipo secundario del Spartan variaba según la misión.

Misiones

Referencias

  • Wade, Mark (2008). «Spartan» (en inglés). Consultado el 20 de junio de 2009.

 spartan3spartan2

HEAO-3

El satélite HEAO-3 fue el tercero de la serie de observatorios astronómicos espaciales de altas energías High Energy Astronomy Observatoheao31ry, desarrollada por la NASA. Fue lanzado el 20 de septiembre de 1979 a una órbita de 500 km de altitud y 43,6 grados de inclinación, continuando operativo hasta el 29 de mayo de 1981. Fue el mayor espectrómetro en órbita de su tiempo.

Fue construido por el Jet Propulsion Laboratory (JPL), y constaba de los siguientes instrumentos para estudiar las bandas de rayos cósmicos y de rayos gamma:

  • Heavy Nuclei Experiment
  • Cosmic Ray Isotope Experiment
  • Gamma-Ray Spectroscopy Experiment

El análisis posterior de los datos obtenidos por el HEAO-3 reveló aproximadamente 130 destellos de rayos gamma.

Al igual que su predecesor HEAO-1, una misión de estudio que operan en la radiografía con fuerza y de rayos gamma (10 keV-MeV 50) banda. Su experimento de alta resolución de Rayos Gamma Espectrómetro, construido por el JPL (Jet Propulsion Laboratory), fue el más grande espectrómetro de germanio puesto en órbita en ese momento. La misión terminó con eficacia cuando el refrigerante criogénico para heao33los detectores de germanio corrió en mayo de 1981.

Todo el HEAO del fueron lanzados por Atlas Centaur SLV-3D desde Cabo Cañaveral .heao32

El Experimento de Rayos Gamma Línea Espectrómetro

El instrumento HEAO “C-1” (como era conocida antes de su lanzamiento) fue un experimento cielo-encuesta, que opera en las bandas de rayos X y gamma de baja energía de rayos duros. El espectrómetro de rayos gamma fue especialmente diseñado para buscar el 511 keV de rayos gamma línea producida por la aniquilación de positrones en las estrellas, las galaxias y el medio interestelar (ISM), línea de emisión de rayos gamma nuclear que se espera de las interacciones de los rayos cósmicos en el ISM, los productos radiactivos de cósmica nucleosíntesis, y las reacciones nucleares debidas a los rayos cósmicos de baja energía. Además, un estudio cuidadoso se hizo de las variaciones espectrales y temporales de las fuentes de rayos X duros conocidos.

El paquete experimental contenía cuatro enfriado, de tipo p de alta pureza Ge detectores de rayos gamma con un volumen total de aproximadamente 100 cm3{\ displaystyle ^ {3}}, Encerrado en una gruesa (6,6 cm promedio) de cesio yoduro (CSI) de centelleo escudo en activo anti-coincidencia [2] para suprimir el fondo extraño. El experimento fue capaz de medir energías de rayos gamma que caen dentro del intervalo de energía de 0,045 a 10 MeV. El sistema detector de Ge tenía una resolución de energía inicial mejor que 2,5 keV a 1,33 MeV y una sensibilidad de línea 1.E-4 a 1.E-5 fotones / cm-s, dependiendo de la energía. parámetros experimentales principales fueron: (1) un factor de geometría de 11,1 cm cuadrados-sr, (2) el área efectiva de 75 cm ~2 {\ displaystyle ^ {2}}a 100 keV, (3) un campo de visión de ~ 30° FWHM a 45 keV, y (4) una resolución de tiempo de menos de 0,1 ms para los detectores de germanio y 10 s para los detectores de la CSI. El espectrómetro de rayos gamma operado hasta el 1 de junio de 1980, cuando su criógeno se agotó.[3] [4] La resolución de energía de los detectores de Ge estaba sujeto a la degradación (aproximadamente proporcional a la energía y el tiempo) debido a daño por radiación.[5] están disponibles en los datos primarios de la NASA HESARC[6] y en el JPL. Incluyen instrumento, órbita, y los datos de aspecto más alguna información de mantenimiento nave espacial en cintas binarios 1600-BPI. Parte de este material posteriormente está archivado en medios más modernos.[7] Se propuso el experimento, desarrollado y administrado por el Jet Propulsion Laboratory del Instituto de Tecnología de California, bajo la dirección del Dr. Allan S. Jacobson.heao34

La composición isotópica de rayos cósmicos primarios Experimento

El experimento HEAO C-2 mide la composición relativa de los isótopos de los rayos cósmicos primarios entre berilio y hierro (Z 4-26) y las abundancias elementales hasta estaño (Z = 50). Contadores Cerenkov y hodoscopes, junto con el campo magnético de la Tierra, forman un espectrómetro. Determinaron carga y la masa de los rayos cósmicos con una precisión de 10% de los elementos más abundantes en el rango de movimiento de 2 a 25 GeV / c (c = velocidad de la luz). Dirección científica fue por investigadores principales Prof. Dr. Bernard Peters y Lyoie Koch-Miramond. La base de datos primarios se ha archivado en el Centro de Estudios Nuclearires de Saclay y el Instituto de Investigación Espacial de Dinamarca. La información sobre los productos de datos está dada por Engelman et al. 1985.[8]

El experimento de núcleos pesados

El propósito del experimento HEAO C-3 fue medir el espectro de carga de núcleos de rayos cósmicos más de la carga nuclear (Z) variar desde 17 hasta 120, en el intervalo de energía 0,3 a 10 GeV / nucleón; para caracterizar las fuentes de rayos cósmicos; procesos de nucleosíntesis, y los modos de propagación. El detector consiste en un instrumento de doble extremo de hodoscopes superiores e inferiores y tres cámaras de ionización de doble Gap. Los dos extremos se separaron por un radiater Cerenkov. El factor geométrico fue de 4 cm cuadrados-sr. Las cámaras de ionización podrían resolver cargo a 0.24 unidades de carga a baja energía y 0,39 unidades de carga a alta energía y alta contador Z. La Cerenkov podría resolver de 0,3 a 0,4 unidades de carga. Binns y col.[9] dio más detalles. Se propuso el experimento y gestionado por el Laboratorio de Radiación Espacial de la Instituto de Tecnología de California (Caltech), bajo la dirección del investigador principal el profesor Edward C. Stone, Jr., de Caltech, y el Dr. Martin H. Israel, y el Dr. Cecil J. Waddington.heao35

Proyecto

El Proyecto HEAO 3 fue la última misión en el Observatorio Astronómico de Alta Energía serie, que fue gestionado por la NASA Centro Marshall de Vuelos Espheao36aciales (MSFC), donde el científico del proyecto fue el Dr. Thomas A. Parnell, y el director de proyecto fue el Dr. John F. Stone. El contratista principal fue TRW.

Durante la misión prevista de 6 meses, el espectrómetro de rayos gamma de alta resolución a bordo realizó un estudio de todo el cielo para la emisión cósmica de fondo de rayos gamma estrecho para una sensibilidad de aproximadamente 10 -4 fotones / cm 2 / s sobre un rango de energía de operación de 0,05-10 MeV. Los análisis de la HEAO-3 de fondo en órbita (Wheaton et al., 1987) también encontraron ~ 130 líneas de rayos gamma detectables.

Espectrómetro

heao37heao38

Hakucho (Corsa-b)

Hakucho (también conocido como Corsa-b antes del lanzamiento) fue la primera astronomía de rayos X por satélite de Japón, desarrollado por el Instituto de Ciencia Espacial y Aeronáutica (entonces una división de la Universidad de Tokio). Se puso en marcha por el ISAS M-3C-4 cohete el 21 de febrero de 1979, y volvió a entrar en la atmósfera el 16 de abril de 1985 [ cita requerida ].hakucho1

Era un reemplazo para el satélite CORSA que no se pudo poner en marcha debido a un fallo del cohete el 4 de febrero 1976 [ cita requerida ].

Aspectos destacados

  • Descubrimiento de suave transitoria de rayos X Cen X-4 y Aql X-1
  • Descubrimiento de muchas fuentes de ráfaga
  • el seguimiento a largo plazo del púlsar de rayos X (por ejemplo, Vela X-1)
  • Descubrimiento de 2 Hz variabilidad en el rápido Burster nombrado más adelante cuasi periodo de oscilación.

El satélite japonés Corsa-b, dedicado a la astronomía de rayos X, fue lanzado por el cohete de tres etapas M-3C-4 desde el Centro Espacial Kagoshima el 21 de febrero 1979 en una órbita semicircular con un apogeo de 572 km, un perigeo de 545 km, con una inclinación de 29,9 ° y un periodo orbital de 96 minutos. Una vez en órbita, el satélite fue renombrado Hakucho, que es japonés para el cisne o Cygnus. Hakucho fue diseñado con los siguientes objetivos: una encuesta completa del cielo en busca de explosiones de rayos X, el estudio espectral y temporal de las fuentes, el monitoreo de fuentes transitorias, el estudio del cielo en la sub-keV rayos X, y la observación de objetos específicos en coordinación con otros instrumentos / en otras longitudes de onda. Después de una semana de la salida de los instrumentos se enciende el 27 de febrero de 1979. Hakucho operado durante unos dos años simultáneamente con el observatorio Einstein carring una carga complementaria a bordo Einstein. A partir de 1983 también operado simultáneamente con Tenma, el segundo satélite astronómico de rayos X japonés. Se volvió a entrar en el 16 Aprile 1985.hakucho2

El satélite era un pilar octogonal con una cola afilada como se muestra en la figura anterior. El satélite tenía un peso ligero. La masa total fue de 95,9 kg, donde la instrumentación de rayos X era aproximadamente un tercio del total. El satélite fue estabilizado en espín, con un período de rotación nominal de 12 segundos. No había una limitación debido a que el ángulo entre el eje de giro y la dirección solar debe haber sido mantenida entre 125 ° y 150 °.

El sistema detector de rayos X consistía en tres experimentos para un total de contadores Elevent. Siete contadores fueron colocados en la cubierta superior de la nave espacial para observar fuentes en la región del cielo a la que se apunta el eje de giro. Cuatro contadores, con campos de visión perpendicular al eje de rotación, barridos bandas del cielo, como el satélite gira.

  • El experimento muy suave (VSX) consistió en cuatro contadores idénticos con una ventana delgada de polipropileno sensibles a 0,1 – 1.0 keV y un área efectiva ~ 77 cm 2 cada uno. Dos de los contadores (la P) se encuentra en una dirección casi paralela al eje de giro en 2,7 ° offset. Los otros dos (el V) donde encuentra compensado al eje de giro inclinado 45 °.
  • En el segundo experimento, suave de rayos X (SFX), consistió en 6 contadores proporcionales con una ventana Sea sensible a 1,5 – 30,0 keV. Cuatro de los contadores (la P dividido en dos CMC y dos FMC) tienen una dirección de visión paralela al eje de giro y los otros dos (el V) fueron de 45 ° inclinado. Dos de los contadores de P, el CMC, tienen idéntica área efectiva (69 cm2) y el campo de visión de 17,6 °. Los otros dos contadores P, la FMC tienen un campo de visión idéntica de 5,8 ° FWHM y el área efectiva de 40 y 83 cm2. Los contadores de V tienen idéntica área efectiva (32 cm2) y el campo de visión 50.3 ° X 1,7 °.
  • El último experimento de rayos X del disco duro (HDX) era un contador de centelleo de NaI (Tl) sensible al 10 – 100 keV. Consistía en una sola unidad con un área efectiva de 49 cm 2 y un campo de visión de 4,4 ° X 10,0 ° FWHM. Este detector se encuentra paralelo al eje de giro con un pequeño desplazamiento de 3 °.

El instrumento podría funcionar con diferentes modos diferentes que proporcionan la energía y el tiempo de resolución (con 5,86 como mínimo). hakucho3

hakucho4Hakucho ha descubierto una serie de nuevas fuentes de estallido de rayos X, incluyendo Cen X-4 y Aql X-1. Estos estallidos vinculados con contrapartidas ópticas de baja masa que habían sido identificados previamente. El satélite también supervisa las variabilidades en los púlsares conocidos como A0535 + 262 y Vela X-1, que muestra complicada variación del período de pulso. Descubierto un 2 Hz rápida variabilidad de la rápida carga de dispersión, conocida ahora como la Oscilación Cuasi periódica.

SAS-3

Pequeño Satélite astronomía 3

Operador: NASAsas31

ID COSPAR: 1975-037A

SatCat №: 07788

Duración de la misión: 4 años

Fabricante: APL · Universidad Johns Hopkins

Masa de lanzamiento: 196,7 kilogramos (434 lb)

Potencia: 65.0 vatios

Fecha de lanzamiento: 7 mayo de 1975 22:45:01 UTC

Cohete: Explorador F-1 S194C

Sitio de lanzamiento: San Marcos

Fin de la misión: 09 de abril 1979

Sistema de referencia: Geocéntrico

Régimen: LEÓN

Excentricidad: 0.0000313

Perigeo: 509,0 kilómetros (316,3 millas)

Apogeo: 516,0 kilómetros (320,6 millas)

Inclinación: 3.0033 °

Período: 94,90 minutos

RAAN: 13.5403 grados

Argumento del perigeo: 37.2127 grados

La media de anomalía: 322.7960 grados

La media de movimiento: 16.22945651

Época: 08 de abril 1979

Número de revoluciones: 21935

SAS 3 naves espaciales, ya que podría haber aparecido desplegado en órbita. El eje de giro nominal, o eje + z, apunta a la parte superior derecha, con la RMC y una estrella de seguimiento para la determinación de la actitud. El resto de instrumentos y un segundo punto de la estrella de seguimiento de la imagen hacia el espectador. Los cuatro paneles solares cargadas las baterías durante el día de la órbita.

El satélite 3 Pequeño Astronomía (SAS 3, también conocido como SAS-C antes de su lanzamiento) de la NASA era una astronomía de rayos X del telescopio espacial.[1] Funcionaba del 7 de mayo de 1975 a abril de 1979. Se cubrió la de rayos X rango con cuatro experimentos a bordo. El satélite, construido por la Universidad Johns Hopkins Laboratorio de Física Aplicada (APL), fue propuesto y está operado por el MIT Center ‘s para la Investigación Espacial (RSE). Se puso en marcha en un explorador del vehículo del italiano plataforma de lanzamiento de San Marcos cerca de Mombasa, Kenia, en una baja de la Tierra, órbita casi ecuatorial. También se conoce como el Explorador de 53 años, como parte de la NASA del Explorador.[2]

La nave espacial era de 3 ejes estabilizado con un volante de inercia que se utilizó para establecer la estabilidad de la rotación nominal, o eje z. La orientación del eje z podría ser alterada durante un período de horas utilizando bobinas par magnético que interactúan con el campo magnético de la Tierra. Los paneles solares cargadas las baterías durante la parte de la luz del día de cada órbita, por lo que SAS 3 tenía esencialmente no fungibles para limitar su tiempo de vida más allá de la vida de las grabadoras, baterías, y arrastre orbital. La nave espacial suelen funcionar en un modo de rotación, girando a una revolución por la órbita de 95 minutos, por lo que los experimentos LED, tubos y colimador listón, que daban a lo largo del eje y, podían ver y explorar el cielo de manera casi continua. La rotación también podría ser detenido, lo que permite extendido (hasta 30 min) señaló observaciones de fuentes seleccionadas por los instrumentos del eje y. Los datos fueron registrados a bordo por los grabadores de cinta magnética, y se reproducen durante la estación de pases de cada órbita.[3]sas33

SAS 3 fue mandado desde la NASA del Centro Espacial Goddard de Vuelo (GSFC) en Greenbelt MD, pero los datos fueron transmitidos por el módem al MIT para el análisis científico, donde el personal científico y técnico estaban de guardia las 24 horas del día. Los datos de cada órbita se sometieron a buscar rápido análisis científico en el MIT antes de la siguiente pasada estación orbital, por lo que el plan operativo ciencia podría ser alterado por instrucciones por teléfono desde el MIT para GSFC con el fin de estudiar los objetivos en tiempo casi real.

Objetivos

Los principales objetivos científicos de la misión fueron:

  1. Determinar las ubicaciones de origen de rayos X brillantes con una precisión de 15 segundos de arco
  2. Fuentes de estudio seleccionado sobre el rango de energía keV 0,1-55
  3. Buscar permanentemente el cielo de novas de rayos X, bengalas, y otros fenómenos transitorios

Instrumentación

SAS 3 lleva cuatro experimentos:

SAS-3 lleva cuatro experimentos de rayos X: colimador de modulación, colimadores de listón, colimadores y suave tubo concentrador de rayos X. La figura muestra la ubicación de cada experimento como montado en el satélite SAS-3. El eje Z es perpendicular a los paneles solares. A continuación sigue una breve descripción de los experimentos a bordo:

  • 2 giratorias sistemas de modulación del colimador. Estos eran compuesto de un colimador de modulación en frente de un banco de contadores proporcionales que detectan de rayos X en las bandas 2-6 y 6-11 keV. El colimador tiene una banda de transmisión con una FWHM de 4,5 minutos de arco y un campo de visión general de 12 ° x 12 ° centrados en la dirección paralela al eje de giro (satélite eje Z).
  • 3 cruzaron colimadores de listón cada uno con contador proporcional. Fueron diseñados para controlar una gran parte del cielo en una amplia banda de direcciones centradas en el plano perpendicular al eje de rotación del satélite (+ Z). Cada detector consistía en un contador proporcional y colimador con un área en el eje efectivo de 75 SQ-cm. Los colimadores definen 3 largas, campos de visión estrecho que se cortan en el eje + Y y están inclinados con respecto al plano YZ del satélite en los ángulos de -30 °, 0 ° y + 30 °, respectivamente. Durante el modo de escaneado, una fuente de rayos X aparecería sucesivamente en las 3 detectores. Tres líneas de posición podrían entonces ser obtenidos, y su intersección determina la verdadera posición de la fuente. El colimador centro tenía un campo de visión con FWHM 1 ° por 32 ° y un FW de 2 ° por 120 °. Los colimadores izquierdo y derecho tenían más estrecha, pero las respuestas similares, es decir, 0,5 ° por 32 ° (FWHM) y 1,0 ° por 100 ° (FW). Los contadores proporcionales estaban llenas de argón y fueron sensibles en el rango de 5-15 keV. Además el detector centro tenía también un contador de xenón, que se encuentra detrás del detector de argón, que se extienden a la respuesta a 60 keV En el rango de energía 1.5-6 keV, 1 cuenta / s = 1.5×10 -10 erg / cm cuadrados-/ s de un espectro similar a un cangrejo. En cualquier órbita dada, ~ 60% del cielo fue escaneada por el detector de listón centro con una exposición que van desde 300 hasta 1125 SQ-cm seg.
  • colimadores 3 de tubo (que estaban situados encima, debajo y a la izquierda de los colimadores de listones) que define un campo de visión circular 1,7 grados. El colimador tubo situado por encima del colimador listón estaba inclinada en un ángulo de 5 grados por encima del eje Y, y por lo tanto podría ser utilizado como una referencia de fondo para los demás colimadores tubo que ven a lo largo del eje y.
  • 1 sistema detector de baja energía a la derecha de los colimadores de listón. Consistía en un conjunto de incidencia 4 de pastoreo, los concentradores parabólicos reflexión con 2 contadores de corrientes de gas independientes sensibles a los rayos X en el rango de 0,15 a 1,0 keV.

Los resultados de investigación

SAS 3 fue especialmente productivo debido a su flexibilidad y capacidad de respuesta rápida. Entre sus resultados más importantes fueron:

  • Poco después del descubrimiento de la primera carga de dispersión de rayos X por los ANS , un intenso período de descubrimiento fuente de la explosión por SAS 3 conducido rápidamente al descubrimiento y caracterización de una docena de objetos adicionales, incluyendo el famoso rápido Burster,[4] MXB1730- 335.[5] [6] Estas observaciones estableció la identificación de reventar fuentes de rayos X con los sistemas binarios de estrellas de neutrones.
  • La RMC fue el primer instrumento para proporcionar rutinariamente posiciones de rayos X que eran suficientemente precisos para permitir el seguimiento por los observatorios ópticos para establecer contrapartidas ópticas de rayos-X /, incluso en las regiones llenas de gente cerca del plano galáctico. Alrededor de 60 posiciones se obtuvieron con una precisión del orden de 1 minuto de arco o menos. Las identificaciones de código resultantes ayudaron a conectar la astronomía de rayos X para el cuerpo principal de la astrofísica estelar.
  • Descubrimiento del 3,6 s pulsaciones del transitoria estrella de neutrones/La estrella binaria 4U 0115 + 63.,[7] que conduce a la determinación de su órbita y la observación de una línea de absorción del ciclotrón en su fuerte campo magnético. Muchos son binarios estrella estrella / de neutrones fueron descubiertos posteriormente como una clase de emisores de rayos X.
  • El descubrimiento de la emisión de rayos X desde HZ 43 (una enana blanca aislada),[8] Algol, y desde soy ella,[9] el primer sistema binario enana blanca altamente magnético se ve en las radiografías.
  • Establecida la localización frecuente de fuentes de rayos X cerca de los centros de los cúmulos globulares.
  • En primer lugar la identificación de un QSO a través de su emisión de rayos X.
  • El instrumento de rayos X blandos estableció que la intensidad difusa 0,10 a 28 keV generalmente se correlaciona inversamente con el neutro H densidad de la columna, lo que indica la absorción de fuentes difusas externos por el plano galáctico medio interestelar.[10]

Principales investigadores sobre SAS 3 eran profesores del MIT , George W. Clark, Hale V. Bradt, y Walter HG Lewin. Otros contribuyentes importantes fueron los Profesores Claude Canizares y Saul A. Rappaport, y los Dres Jeffrey A. Hoffman, George Ricker, Jeff McClintock, Rodger E. Doxsey, Garrett Jernigan, John Doty, y muchos otros, incluyendo numerosos estudiantes graduados.

Aryabhata

Satélite Aryabhata.

Tipo de misión: Astrofísicaaryabhata1

Operador: ISRO

ID COSPAR: 1975-033A

SatCat №: 7752

Masa de lanzamiento: 360 kg (794 lb) [1]

Potencia: 46 vatios

Fecha de lanzamiento: 19 de abril de 1975, 07:30 UTC [2]

Cohete: Kosmos-3M

Sitio de lanzamiento: Kapustin Yar 107/2

Fin de la misión último contacto: 24 de de abril de 1975

Reentrada: 12 de febrero 1992

Sistema de referencia: Geocentricq

Perigeo: 568 kilómetros (353 millas)

Apogeo: 611 kilómetros (380 millas)

Inclinación: 50,6 grados

Período: 96.46 minutos

Época: 19 de de mayo de 1975 [3]

Aryabhata fue el primer satélite artificial fabricado por la India. El nombre proviene del matemático y astrónomo hindú Aryabhata (476 d.C. – 550 d.C.). Fue lanzado por la antigua Unión Soviética a bordo de un cohete Cosmos-3M (Kosmos 11K65M) desde el Cosmódromo de Kapustin Yar el 19 de abril de 1975. El satélite fue fabricado por la Agencia India de Investigación Espacial (ISRO).aryabhata2

Las operaciones científicas del satélite consistían en experimentos sobre astronomía de rayos-X, el estudio de las capas altas de la atmósfera terrestre y sobre física solar. El satélite tenía forma de polígono de 26 caras, cubiertas por paneles solares excepto la cara inferior y la cara superior; la masa total del cuerpo era 360 kg. Tras cuatro días en órbita, un fallo de energía inutilizó al satélite para proseguir con los experimentos, y a los cinco días de estar en órbita se dejó de recibir señal alguna del satélite.

La reentrada en la atmósfera se produjo el 11 de febrero de 1992.

Aryabhata, primero no tripulado la Tierra por satélite construido por India. Fue nombrado para un astrónomo indio prominente y matemático del siglo 5 ce. El satélite fue ensamblado en Peenya, cerca de Bangalore, pero se puso en marcha desde el interior de la Unión Soviética por un cohete de fabricación rusa el 19 de abril de 1975. Aryabhata pesaba 794 libras (360 kilogramos) y se instrumentó para explorar las condiciones de la ionosfera de la Tierra, medir neutrones y rayos gamma procedentes del Sol, y llevar a cabo investigaciones en astronomía de rayos X. Los instrumentos científicos tuvieron que ser apagado durante el quinto día en órbita debido a un fallo en el sistema de energía eléctrica del satélite. … (100 de 114 palabras)aryabhata4

Lanzamiento

Fue lanzado por la India el 19 de abril 1975 [1] de Kapustin Yar utilizando un Kosmos-3M vehículo de lanzamiento. Fue construido por la Organización de Investigación Espacial de la India (ISRO) para ganar experiencia en la construcción y operación de un satélite en el espacio.[5] El lanzamiento vino de un acuerdo entre la India y la Unión Soviética dirigida por UR Rao y firmado en 1972. Permitía la URSS para utilizar puertos de la India para el seguimiento de los buques y el lanzamiento de los buques a cambio de lanzamiento de satélites de la India.[6]aryabhata3

El 19 de abril de 1975, 96.46 minutos en la órbita del satélite tuvo un apogeo de 611 kilómetros (380 millas) y un perigeo de 568 kilómetros (353 millas), con una inclinación de 50,6 grados. [3] Fue construido para llevar a cabo experimentos en los X la astronomía de rayos gamma, astronomía, y la física solar. La nave espacial era un poliedro de 26 caras 1,4 metros (4,6 pies) de diámetro. Todas las caras (a excepción de la parte superior e inferior) estaban cubiertas con células solares. Un fallo de alimentación detuvo experimentos después de cuatro días y 60 órbitas con todas las señales de la sonda se perdieron después de cinco días de operación. De acuerdo con informes de los medios soviéticos, el satélite siguió funcionando y transmitir información desde hace algún tiempo. El satélite devuelta a la atmósfera de la Tierra el 11 de febrero de 1992. Fue uno de los mejores satélites jamás realizadas por la India.

Legado

Año 1984 sello de URSS con Bhaskara -I, II y Bhaskara-satélites Aryabhata

  • Aryabhata fue nombrado por el astrónomo y matemático del siglo quinto de la India por el mismo nombre.[7]
  • La imagen del satélite apareció en el reverso de la India 2 rupias billetes de banco entre 1976 y 1997 (Escoja catálogo) y el número de nota una rupia:. P-79a-m) [8]

Ariel 5

Tipo de misión: Astronomía

Operador: SERC / NASA

ID COSPAR: 1974-077Aariel51

SatCat №: 7471

Fabricante: Goddard Space Flight Center

Masa de lanzamiento: 130,5 kg (288 lb)

Fecha de lanzamiento: 15 de octubre de 1974, 07:47:00 UTC

Cohete: Scout B-1

Sitio de lanzamiento: San Marcos

Fin de la misión: 14 de de marzo de 1980

Parámetros orbitales

Excentricidad: 0.00325

Perigeo: 512 km (318 millas)

Apogeo: 557 km (346 millas)

Inclinación: 2.9 grados

Período: 95.3 minutos

Instrumentos:

Modulación de rotación del colimador (RMC)
De 2 a 10 KeV Instrumento Sky Survey (SSI)
De alta resolución de la fuente de Spectra
Bragg Crystal Espectrómetro (BCS)
De alta energía cósmica X-Ray Spectra
All-Sky monitor

Vista de la plataforma Santa Rita, desde el barco. Es el día del lanzamiento.

Ariel 5 [1] era una unión británica y estadounidense[2], observatorio espacial dedicado a la observación ariel52del cielo en la banda de rayos X. Se puso en marcha el 15 de octubre 1974 de la plataforma de San Marcos en el Océano Índico y funcionó hasta 1980. Fue el penúltimo satélite que se lanzará como parte del programa de Ariel. Fue diseñado para ajustarse a un presupuesto de recursos de 2 kg, 1 bit por segundo, y 1 W.[3]

El monitor de todo el cielo (ASM) fue dos cámaras oscuras unidimensionales escaneando la mayor parte del cielo cada revolución de la nave espacial.[3] La resolución angular fue de 10 x 10°, con un área efectiva de 3 cm 2 (0,465 pulgadas cuadradas), y un paso de banda de 3-6 keV.

El SSI tenía una resolución angular de 0,75 x 10,6°, con un área efectiva de 290 cm2 (45 pulgadas cuadradas), y un paso de banda de 2 a 20 keV.[3]

La misión fue una colaboración británico-EE.UU. El Consejo de Investigación de Ciencias gestionado el proyecto para el Reino Unido y GSFC / NASA para el EE.UU. Ariel V se dedica a la vigilancia del cielo de rayos X con una carga completa. La misión terminó en la primavera de 1980.

Carga útil:

  • Experimentos alineados con el eje de giro.
    • Modulación de rotación del colimador (RMC) (0,3-30 keV).
    • Espectrómetro de alta resolución contador proporcional.
    • Polarímetro / espectrómetro.
    • Telescopio de centelleo.
  • All-Sky Monitor (ASM), una pequeña (~ 1 cm 2) cámara estenopeica (3-6 keV).
  • Instrumento Sky Survey (SSI) compuesto de dos contadores proporcionales con 290 cm2 de área efectiva cada uno (1,5-20 keV).

Ciencia destacados:

  • El seguimiento a largo plazo de numerosas fuentes de rayos-X.
  • Descubrimiento de varios púlsares de rayos X a largo plazo (minutos).
  • Descubrimiento de varios transitorios de rayos X brillantes probablemente contienen un Agujero Negro (por ejemplo A0620-00 = Nova Lu 1975).
  • Estableciendo que las galaxias Seyfert I (AGN) son una clase de emisores de rayos X.
  • Descubrimiento de emisión de línea de hierro en fuentes extragalácticas.

Ariel V llevó a muchos experimentos. Un conjunto de cuatro fueron co-alineado con el eje de spin-monitorización de un pequeño campo del cielo en rayos X. Otros dos experimentos, All-Sky Monitor (ASM) y el Instrumento Sky-encuesta (SSI), eran en cambio, como sugieren sus nombres, dedicada a la vigilancia de la región más amplia del cielo en rayos X.

La imagen muestra un técnico que trabaja en el Ariel V.

Instrumentaciónariel53

El satélite Ariel V supervisa el cielo de rayos X con 6 instrumentos diferentes. Cuatro de los instrumentos fueron alineados con el eje de giro: una rotación de modulación del colimador (RMC), que opera en el rango de 0,3 a 20 keV de energía y capaz de determinar posiciones de la fuente de ~ 2 minutos de arco; un espectrómetro contador proporcional de alta resolución, con 128 canales analizador de altura de pulso sobre el rango de 2-30 keV; un polarímetro / espectrómetro, que opera en el rango de 2-8 keV y capaz de detectar la polarización del 3%ariel54; y un telescopio de centelleo (ST), dedicado a los estudios temporales y espectrales de las fuentes de energías en hasta 40 keV.

Si bien estos 4 experimentos se dedicaron a un estudio detallado de una pequeña región del cielo dentro de ~ 10 grados del polo por satélite, los otros 2 experimentos cubren amplias regiones del cielo. Estos experimentos fueron 2 el Monitor All-Sky (ASM) y el Instrumento de observación del cielo (SSI). El ASM proporciona cobertura en el rango de 3-6 keV con un par de ~ 1 cm 2 cada cámara estenopeica. Se ve todo el cielo con la excepción de una banda de ~ 8 grados de amplio centrado en el polo sur de la nave espacial. Fue pensado como un sistema de detección temprana de los fenómenos transitorios, y como un monitor continuo de relativamente brillantes (> 0,2 cangrejo) fuentes galácticas. El SSI se componía de dos pares de contadores proporcionales (sistema de LE y del sistema HE) teniendo cada uno un área efectiva de 290 cm 2. Debido a una fuga tras el lanzamiento lento, un detector LE se apagó al principio de la misión, lo que reduce el área efectiva de dicho sistema a 145 cm2. Los detectores se encuentran en la región ecuatorial de la nave espacial y se escanean una banda ancha de 20 X 360 grados del cielo cada giro satélite. Los dos sistemas tenían un keV 1.2 a 5.8 (LE) y el rango de energía 2,4 a 19,8 keV (HE). Cada par de detectores tenía un campo de visión colimado a 0.75 X 10,6 grados (FWHM). Los objetivos científicos primaria SSI eran para realizar un estudio de alta sensibilidad del cielo y obtener ubicaciones, intensidades y los espectros de las fuentes interesantes.